Natural disasters detection using explainable deep learning

Ahmad M. Mustafa, Rand Agha, Lujain Ghazalat, Tariq Sha'ban
{"title":"Natural disasters detection using explainable deep learning","authors":"Ahmad M. Mustafa,&nbsp;Rand Agha,&nbsp;Lujain Ghazalat,&nbsp;Tariq Sha'ban","doi":"10.1016/j.iswa.2024.200430","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning applications have far-reaching implications in people’s daily lives. Disaster management professionals are becoming increasingly interested in applying deep learning to prepare for and respond to natural disasters. In this paper, we aim to assist natural disaster management professionals in preparing for disasters by developing a framework that can accurately classify natural disasters and interpret the results using a combination of a deep learning model and an XAI method to ensure reliability and ease of interpretation without a technical background. Two main aspects categorize the novelty of our work. The first is utilizing pre-trained Models such as VGGNet19, ResNet50, and ViT for accurate classification of natural disaster images. The second is implementing three explainable AI techniques-Gradient-weighted Class Activation Mapping (Grad-CAM), Grad CAM++, and Local Interpretable Model-agnostic Explanations (LIME) to ensure the interpretability of the model’s predictions, making the decision-making process transparent and reliable. Experiments on the Natural disaster datasets (Niloy et al. 2021) and MEDIC with a ViT-B-32 model achieved a high accuracy of 95.23%. Additionally, explainable artificial intelligence techniques such as LIME, Grad-CAM, and Grad-CAM++ are used to evaluate model performance and visualize decision-making. Our code is available at.<span><span><sup>1</sup></span></span></p></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"23 ","pages":"Article 200430"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667305324001042/pdfft?md5=289fa5e7afac4b6fe86ff07bc28dfb3a&pid=1-s2.0-S2667305324001042-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324001042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning applications have far-reaching implications in people’s daily lives. Disaster management professionals are becoming increasingly interested in applying deep learning to prepare for and respond to natural disasters. In this paper, we aim to assist natural disaster management professionals in preparing for disasters by developing a framework that can accurately classify natural disasters and interpret the results using a combination of a deep learning model and an XAI method to ensure reliability and ease of interpretation without a technical background. Two main aspects categorize the novelty of our work. The first is utilizing pre-trained Models such as VGGNet19, ResNet50, and ViT for accurate classification of natural disaster images. The second is implementing three explainable AI techniques-Gradient-weighted Class Activation Mapping (Grad-CAM), Grad CAM++, and Local Interpretable Model-agnostic Explanations (LIME) to ensure the interpretability of the model’s predictions, making the decision-making process transparent and reliable. Experiments on the Natural disaster datasets (Niloy et al. 2021) and MEDIC with a ViT-B-32 model achieved a high accuracy of 95.23%. Additionally, explainable artificial intelligence techniques such as LIME, Grad-CAM, and Grad-CAM++ are used to evaluate model performance and visualize decision-making. Our code is available at.1

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可解释深度学习检测自然灾害
深度学习应用对人们的日常生活影响深远。灾害管理专业人员对应用深度学习防备和应对自然灾害越来越感兴趣。在本文中,我们旨在帮助自然灾害管理专业人员做好备灾准备,为此我们开发了一个框架,该框架可以准确地对自然灾害进行分类,并结合深度学习模型和 XAI 方法对结果进行解释,以确保可靠性和解释的简便性,而无需技术背景。我们工作的新颖性主要体现在两个方面。首先是利用 VGGNet19、ResNet50 和 ViT 等预训练模型对自然灾害图像进行准确分类。其次,我们采用了三种可解释人工智能技术--梯度加权类激活映射(Grad-CAM)、梯度 CAM++ 和局部可解释模型解释(LIME),以确保模型预测的可解释性,使决策过程透明可靠。在自然灾害数据集(Niloy 等人,2021 年)和 MEDIC 上使用 ViT-B-32 模型进行的实验取得了 95.23% 的高准确率。此外,LIME、Grad-CAM 和 Grad-CAM++ 等可解释人工智能技术也被用于评估模型性能和可视化决策。我们的代码见
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
期刊最新文献
MapReduce teaching learning based optimization algorithm for solving CEC-2013 LSGO benchmark Testsuit Intelligent gear decision method for vehicle automatic transmission system based on data mining Design and implementation of EventsKG for situational monitoring and security intelligence in India: An open-source intelligence gathering approach Ideological orientation and extremism detection in online social networking sites: A systematic review Multi-objective optimization of power networks integrating electric vehicles and wind energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1