POSIT: An automated tool for detecting and characterizing diverse morphological features in raster data - Application to pockmarks, mounds, and craters

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-09-01 DOI:10.1016/j.acags.2024.100190
José J. Alonso del Rosario , Ariadna Canari , Elízabeth Blázquez Gómez , Sara Martínez-Loriente
{"title":"POSIT: An automated tool for detecting and characterizing diverse morphological features in raster data - Application to pockmarks, mounds, and craters","authors":"José J. Alonso del Rosario ,&nbsp;Ariadna Canari ,&nbsp;Elízabeth Blázquez Gómez ,&nbsp;Sara Martínez-Loriente","doi":"10.1016/j.acags.2024.100190","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate detection and characterization of seafloor morphologies are crucial for marine researchers and industries involved in underwater mapping, environmental monitoring, or resource exploration. Although their detection has relied on visual inspection of detailed bathymetries, few efforts to automate the process can be found in the literature. This study presents a novel MatLab computer code called POSIT (Feature Signature Detection) based on the convolution and correlation with a structural element containing the shape to search for. POSIT is successfully tested on both synthetic and real datasets, encompassing marine and terrestrial digital elevation models of different resolution and on a digital image. The centroids of submarine pockmarks and mounds, terrestrial volcanic craters and lunar craters are calculated with zero dispersion and perfect location, and their geometric parameters and confidence are provided.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"23 ","pages":"Article 100190"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197424000375/pdfft?md5=dc86b3aae122c80855ab41c6633e87ec&pid=1-s2.0-S2590197424000375-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate detection and characterization of seafloor morphologies are crucial for marine researchers and industries involved in underwater mapping, environmental monitoring, or resource exploration. Although their detection has relied on visual inspection of detailed bathymetries, few efforts to automate the process can be found in the literature. This study presents a novel MatLab computer code called POSIT (Feature Signature Detection) based on the convolution and correlation with a structural element containing the shape to search for. POSIT is successfully tested on both synthetic and real datasets, encompassing marine and terrestrial digital elevation models of different resolution and on a digital image. The centroids of submarine pockmarks and mounds, terrestrial volcanic craters and lunar craters are calculated with zero dispersion and perfect location, and their geometric parameters and confidence are provided.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POSIT:用于检测和描述栅格数据中各种形态特征的自动工具--应用于麻坑、土墩和火山口
对于从事水下测绘、环境监测或资源勘探的海洋研究人员和行业来说,准确检测和描述海底形态至关重要。虽然对海底形态的检测一直依赖于对详细水深测量数据的目测,但文献中鲜有将这一过程自动化的尝试。本研究介绍了一种名为 POSIT(特征签名检测)的新型 MatLab 计算机代码,它基于与包含要搜索的形状的结构元素的卷积和相关性。POSIT 成功地在合成数据集和真实数据集上进行了测试,包括不同分辨率的海洋和陆地数字高程模型以及数字图像。计算出的海底麻坑和土墩、陆地火山口和月球陨石坑的中心点具有零分散和完美定位的特点,并提供了它们的几何参数和置信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1