Omega-3 PUFAs slow organ aging through promoting energy metabolism

IF 9.1 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pharmacological research Pub Date : 2024-08-28 DOI:10.1016/j.phrs.2024.107384
{"title":"Omega-3 PUFAs slow organ aging through promoting energy metabolism","authors":"","doi":"10.1016/j.phrs.2024.107384","DOIUrl":null,"url":null,"abstract":"<div><p>Energy metabolism disorder, mainly exhibiting the inhibition of fatty acid degradation and lipid accumulation, is highly related with aging acceleration. However, the intervention measures are deficient. Here, we reported Omega-3 polyunsaturated fatty acids (Omega-3 PUFAs), especially EPA, exerted beneficial effects on maintaining energy metabolism and lipid homeostasis to slow organ aging. As the endogenous agonist of peroxisome proliferator–activated receptor α (PPARα), Omega-3 PUFAs significantly boosted fatty acid β-oxidation and ATP production in multiple aged organs. Consequently, Omega-3 PUFAs effectively inhibited age-related pathological changes, preserved organ function, and retarded aging process. The beneficial effects of Omega-3 PUFAs were also testified in mfat-1 transgenic mice, which spontaneously generate abundant endogenous Omega-3 PUFAs. In conclusion, our study innovatively demonstrated Omega-3 PUFAs administration in diet slow aging through promoting energy metabolism. The supplement of Omega-3 PUFAs or <em>fat-1</em> transgene provides a promising therapeutic approach to promote healthy aging in the elderly.</p></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1043661824003293/pdfft?md5=87e8b82a8e1cff0c6806d4f9440f9748&pid=1-s2.0-S1043661824003293-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661824003293","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Energy metabolism disorder, mainly exhibiting the inhibition of fatty acid degradation and lipid accumulation, is highly related with aging acceleration. However, the intervention measures are deficient. Here, we reported Omega-3 polyunsaturated fatty acids (Omega-3 PUFAs), especially EPA, exerted beneficial effects on maintaining energy metabolism and lipid homeostasis to slow organ aging. As the endogenous agonist of peroxisome proliferator–activated receptor α (PPARα), Omega-3 PUFAs significantly boosted fatty acid β-oxidation and ATP production in multiple aged organs. Consequently, Omega-3 PUFAs effectively inhibited age-related pathological changes, preserved organ function, and retarded aging process. The beneficial effects of Omega-3 PUFAs were also testified in mfat-1 transgenic mice, which spontaneously generate abundant endogenous Omega-3 PUFAs. In conclusion, our study innovatively demonstrated Omega-3 PUFAs administration in diet slow aging through promoting energy metabolism. The supplement of Omega-3 PUFAs or fat-1 transgene provides a promising therapeutic approach to promote healthy aging in the elderly.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
奥米加-3 脂肪酸通过促进能量代谢延缓器官衰老
能量代谢紊乱主要表现为脂肪酸降解抑制和脂质蓄积,与加速衰老高度相关。然而,干预措施却很缺乏。在此,我们报道了欧米伽-3 多不饱和脂肪酸(Omega-3 PUFAs),尤其是 EPA,对维持能量代谢和脂质平衡以延缓器官衰老具有有益作用。作为过氧化物酶体增殖激活受体α(PPARα)的内源性激动剂,Omega-3 PUFAs能显著促进多个衰老器官的脂肪酸β氧化和ATP生成。因此,Omega-3 PUFAs 能有效抑制与年龄相关的病理变化,保护器官功能,延缓衰老过程。mfat-1 转基因小鼠自发产生丰富的内源性 Omega-3 PUFA,Omega-3 PUFAs 的有益作用在这种小鼠身上也得到了验证。总之,我们的研究创新性地证明了在饮食中摄入 Omega-3 PUFA 可通过促进能量代谢来延缓衰老。补充 Omega-3 PUFAs 或脂肪-1 转基因为促进老年人健康衰老提供了一种有前景的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmacological research
Pharmacological research 医学-药学
CiteScore
18.70
自引率
3.20%
发文量
491
审稿时长
8 days
期刊介绍: Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.
期刊最新文献
Immobilized Protein Strategies Based on Cell Membrane Chromatography and its Application in Discovering Active and Toxic Substances in Traditional Chinese Medicine. Nanoparticles Encapsulating Phosphatidylinositol Derivatives Promote Neuroprotection and Functional Improvement via a long-lasting activation of TRPML1 lysosomal channel in Preclinical Models of ALS. New avenues of combating antibiotic resistance by targeting cryptic pockets. Role of the Histone Deacetylase Family in Lipid Metabolism: Structural Specificity and Functional Diversity. ESC-sEVs alleviate non-early-stage osteoarthritis progression by rejuvenating senescent chondrocytes via FOXO1A-autophagy axis but not inducing apoptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1