Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics

IF 9.1 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pharmacological research Pub Date : 2024-08-28 DOI:10.1016/j.phrs.2024.107383
{"title":"Cell life-or-death events in osteoporosis: All roads lead to mitochondrial dynamics","authors":"","doi":"10.1016/j.phrs.2024.107383","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.</p></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1043661824003281/pdfft?md5=f38b9f3dd2ea707ff789171d4e220b0c&pid=1-s2.0-S1043661824003281-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661824003281","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondria exhibit heterogeneous shapes and networks within and among cell types and tissues, also in normal or osteoporotic bone tissues with complex cell types. This dynamic characteristic is determined by the high plasticity provided by mitochondrial dynamics and is stemmed from responding to the survival and functional requirements of various bone cells in a specific microenvironments. In contrast, mitochondrial dysfunction, induced by dysregulation of mitochondrial dynamics, may act as a trigger of cell death signals, including common apoptosis and other forms of programmed cell death (PCD). These PCD processes consisting of tightly structured cascade gene expression events, can further influence the bone remodeling by facilitating the death of various bone cells. Mitochondrial dynamics, therefore, drive the bone cells to stand at the crossroads of life and death by integrating external signals and altering metabolism, shape, and signal-response properties of mitochondria. This implies that targeting mitochondrial dynamics displays significant potential in treatment of osteoporosis. Considerable effort has been made in osteoporosis to emphasize the parallel roles of mitochondria in regulating energy metabolism, calcium signal transduction, oxidative stress, inflammation, and cell death. However, the emerging field of mitochondrial dynamics-related PCD is not well understood. Herein, to bridge the gap, we outline the latest knowledge on mitochondrial dynamics regulating bone cell life or death during normal bone remodeling and osteoporosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨质疏松症中的细胞生死事件:所有道路都通向线粒体动力学
线粒体在细胞类型和组织内部、细胞类型和组织之间,以及在具有复杂细胞类型的正常或骨质疏松症骨组织中,呈现出不同的形状和网络。这种动态特征是由线粒体动力学提供的高度可塑性决定的,并源于对特定微环境中各种骨细胞的生存和功能要求的响应。相反,线粒体动力学失调引起的线粒体功能障碍可能会触发细胞死亡信号,包括常见的细胞凋亡和其他形式的程序性细胞死亡(PCD)。这些程序性细胞死亡过程由结构紧密的级联基因表达事件组成,可通过促进各种骨细胞的死亡进一步影响骨重塑。因此,线粒体动力学通过整合外部信号,改变线粒体的新陈代谢、形状和信号响应特性,促使骨细胞站在生与死的十字路口。这意味着针对线粒体动力学的研究在治疗骨质疏松症方面具有巨大潜力。在骨质疏松症领域,人们一直在努力强调线粒体在调节能量代谢、钙信号转导、氧化应激、炎症和细胞死亡方面的平行作用。然而,人们对线粒体动力学相关的 PCD 这一新兴领域还不甚了解。为了弥补这一空白,我们在此概述了在正常骨重塑和骨质疏松症过程中线粒体动态调节骨细胞生死的最新知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmacological research
Pharmacological research 医学-药学
CiteScore
18.70
自引率
3.20%
发文量
491
审稿时长
8 days
期刊介绍: Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.
期刊最新文献
Immobilized Protein Strategies Based on Cell Membrane Chromatography and its Application in Discovering Active and Toxic Substances in Traditional Chinese Medicine. Nanoparticles Encapsulating Phosphatidylinositol Derivatives Promote Neuroprotection and Functional Improvement via a long-lasting activation of TRPML1 lysosomal channel in Preclinical Models of ALS. New avenues of combating antibiotic resistance by targeting cryptic pockets. Role of the Histone Deacetylase Family in Lipid Metabolism: Structural Specificity and Functional Diversity. ESC-sEVs alleviate non-early-stage osteoarthritis progression by rejuvenating senescent chondrocytes via FOXO1A-autophagy axis but not inducing apoptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1