Cross-stage feature fusion and efficient self-attention for salient object detection

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-08-26 DOI:10.1016/j.jvcir.2024.104271
Xiaofeng Xia, Yingdong Ma
{"title":"Cross-stage feature fusion and efficient self-attention for salient object detection","authors":"Xiaofeng Xia,&nbsp;Yingdong Ma","doi":"10.1016/j.jvcir.2024.104271","DOIUrl":null,"url":null,"abstract":"<div><p>Salient Object Detection (SOD) approaches usually aggregate high-level semantics with object details layer by layer through a pyramid fusion structure. However, the progressive feature fusion mechanism may lead to gradually dilution of valuable semantics and prediction accuracy. In this work, we propose a Cross-stage Feature Fusion Network (CFFNet) for salient object detection. CFFNet consists of a Cross-stage Semantic Fusion Module (CSF), a Feature Filtering and Fusion Module (FFM), and a progressive decoder to tackle the above problems. Specifically, to alleviate the semantics dilution problem, CSF concatenates different stage backbone features and extracts multi-scale global semantics using transformer blocks. Global semantics are then distributed to corresponding backbone stages for cross-stage semantic fusion. The FFM module implements efficient self-attention-based feature fusion. Different from regular self-attention which has quadratic computational complexity. Finally, a progressive decoder is adopted to refine saliency maps. Experimental results demonstrate that CFFNet outperforms state-of-the-arts on six SOD datasets.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104271"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104732032400227X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Salient Object Detection (SOD) approaches usually aggregate high-level semantics with object details layer by layer through a pyramid fusion structure. However, the progressive feature fusion mechanism may lead to gradually dilution of valuable semantics and prediction accuracy. In this work, we propose a Cross-stage Feature Fusion Network (CFFNet) for salient object detection. CFFNet consists of a Cross-stage Semantic Fusion Module (CSF), a Feature Filtering and Fusion Module (FFM), and a progressive decoder to tackle the above problems. Specifically, to alleviate the semantics dilution problem, CSF concatenates different stage backbone features and extracts multi-scale global semantics using transformer blocks. Global semantics are then distributed to corresponding backbone stages for cross-stage semantic fusion. The FFM module implements efficient self-attention-based feature fusion. Different from regular self-attention which has quadratic computational complexity. Finally, a progressive decoder is adopted to refine saliency maps. Experimental results demonstrate that CFFNet outperforms state-of-the-arts on six SOD datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨阶段特征融合和高效自我关注,实现突出物体检测
突出物体检测(SOD)方法通常通过金字塔式的融合结构,将高层语义与物体细节逐层聚合。然而,这种渐进式的特征融合机制可能会导致有价值的语义和预测精度逐渐被稀释。在这项工作中,我们提出了一种用于突出物体检测的跨阶段特征融合网络(CFFNet)。CFFNet 由跨阶段语义融合模块(CSF)、特征过滤和融合模块(FFM)以及渐进解码器组成,以解决上述问题。具体来说,为缓解语义稀释问题,CSF 将不同阶段的骨干特征串联起来,并使用转换块提取多尺度全局语义。然后,全局语义被分配到相应的骨干阶段,进行跨阶段语义融合。FFM 模块实现了高效的基于自注意的特征融合。与计算复杂度为二次方的常规自注意不同。最后,采用渐进式解码器来完善显著性图。实验结果表明,CFFNet 在六个 SOD 数据集上的表现优于同行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Illumination-guided dual-branch fusion network for partition-based image exposure correction HRGUNet: A novel high-resolution generative adversarial network combined with an improved UNet method for brain tumor segmentation Underwater image enhancement method via extreme enhancement and ultimate weakening Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1