{"title":"Gated parametric neuron for spike-based audio recognition","authors":"","doi":"10.1016/j.neucom.2024.128477","DOIUrl":null,"url":null,"abstract":"<div><p>Spiking neural networks (SNNs) aim to simulate real neural networks in the human brain with biologically plausible neurons. The leaky integrate-and-fire (LIF) neuron is one of the most widely studied SNN architectures. However, it has the vanishing gradient problem when trained with backpropagation. Additionally, its neuronal parameters are often manually specified and fixed, in contrast to the heterogeneity of real neurons in the human brain. This paper proposes a gated parametric neuron (GPN) to process spatio-temporal information effectively with the gating mechanism. Compared with the LIF neuron, the GPN has two distinguishing advantages: (1) it copes well with the vanishing gradients by improving the flow of gradient propagation; and, (2) it learns spatio-temporal heterogeneous neuronal parameters automatically. Additionally, we use the same gate structure to eliminate initial neuronal parameter selection and design a hybrid recurrent neural network-SNN structure. Experiments on two spike-based audio datasets demonstrated that the GPN network outperformed several state-of-the-art SNNs, could mitigate vanishing gradients, and had spatio-temporal heterogeneous parameters. Our work shows the ability of SNNs to handle long-term dependencies and achieve high performance simultaneously.</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224012487","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Spiking neural networks (SNNs) aim to simulate real neural networks in the human brain with biologically plausible neurons. The leaky integrate-and-fire (LIF) neuron is one of the most widely studied SNN architectures. However, it has the vanishing gradient problem when trained with backpropagation. Additionally, its neuronal parameters are often manually specified and fixed, in contrast to the heterogeneity of real neurons in the human brain. This paper proposes a gated parametric neuron (GPN) to process spatio-temporal information effectively with the gating mechanism. Compared with the LIF neuron, the GPN has two distinguishing advantages: (1) it copes well with the vanishing gradients by improving the flow of gradient propagation; and, (2) it learns spatio-temporal heterogeneous neuronal parameters automatically. Additionally, we use the same gate structure to eliminate initial neuronal parameter selection and design a hybrid recurrent neural network-SNN structure. Experiments on two spike-based audio datasets demonstrated that the GPN network outperformed several state-of-the-art SNNs, could mitigate vanishing gradients, and had spatio-temporal heterogeneous parameters. Our work shows the ability of SNNs to handle long-term dependencies and achieve high performance simultaneously.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.