A semantic guidance-based fusion network for multi-label image classification

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-09-01 DOI:10.1016/j.patrec.2024.08.020
Jiuhang Wang , Hongying Tang , Shanshan Luo , Liqi Yang , Shusheng Liu , Aoping Hong , Baoqing Li
{"title":"A semantic guidance-based fusion network for multi-label image classification","authors":"Jiuhang Wang ,&nbsp;Hongying Tang ,&nbsp;Shanshan Luo ,&nbsp;Liqi Yang ,&nbsp;Shusheng Liu ,&nbsp;Aoping Hong ,&nbsp;Baoqing Li","doi":"10.1016/j.patrec.2024.08.020","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-label image classification (MLIC), a fundamental task assigning multiple labels to each image, has been seen notable progress in recent years. Considering simultaneous appearances of objects in the physical world, modeling object correlations is crucial for enhancing classification accuracy. This involves accounting for spatial image feature correlation and label semantic correlation. However, existing methods struggle to establish these correlations due to complex spatial location and label semantic relationships. On the other hand, regarding the fusion of image feature relevance and label semantic relevance, existing methods typically learn a semantic representation in the final CNN layer to combine spatial and label semantic correlations. However, different CNN layers capture features at diverse scales and possess distinct discriminative abilities. To address these issues, in this paper we introduce the Semantic Guidance-Based Fusion Network (SGFN) for MLIC. To model spatial image feature correlation, we leverage the advanced TResNet architecture as the backbone network and employ the Feature Aggregation Module for capturing global spatial correlation. For label semantic correlation, we establish both local and global semantic correlation. We further enrich model features by learning semantic representations across multiple convolutional layers. Our method outperforms current state-of-the-art techniques on PASCAL VOC (2007, 2012) and MS-COCO datasets.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 254-261"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002526","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-label image classification (MLIC), a fundamental task assigning multiple labels to each image, has been seen notable progress in recent years. Considering simultaneous appearances of objects in the physical world, modeling object correlations is crucial for enhancing classification accuracy. This involves accounting for spatial image feature correlation and label semantic correlation. However, existing methods struggle to establish these correlations due to complex spatial location and label semantic relationships. On the other hand, regarding the fusion of image feature relevance and label semantic relevance, existing methods typically learn a semantic representation in the final CNN layer to combine spatial and label semantic correlations. However, different CNN layers capture features at diverse scales and possess distinct discriminative abilities. To address these issues, in this paper we introduce the Semantic Guidance-Based Fusion Network (SGFN) for MLIC. To model spatial image feature correlation, we leverage the advanced TResNet architecture as the backbone network and employ the Feature Aggregation Module for capturing global spatial correlation. For label semantic correlation, we establish both local and global semantic correlation. We further enrich model features by learning semantic representations across multiple convolutional layers. Our method outperforms current state-of-the-art techniques on PASCAL VOC (2007, 2012) and MS-COCO datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义引导的多标签图像分类融合网络
多标签图像分类(MLIC)是一项为每幅图像分配多个标签的基本任务,近年来取得了显著进展。考虑到物理世界中物体的同时出现,建立物体相关性模型对于提高分类准确性至关重要。这就需要考虑空间图像特征相关性和标签语义相关性。然而,由于空间位置和标签语义关系复杂,现有方法很难建立这些相关性。另一方面,关于图像特征相关性和标签语义相关性的融合,现有方法通常在最后的 CNN 层学习语义表示,以结合空间和标签语义相关性。然而,不同的 CNN 层捕捉不同尺度的特征,并具有不同的判别能力。为了解决这些问题,我们在本文中为 MLIC 引入了基于语义引导的融合网络(SGFN)。为了建立空间图像特征相关性模型,我们利用先进的 TResNet 架构作为骨干网络,并采用特征聚合模块来捕捉全局空间相关性。对于标签语义相关性,我们建立了局部和全局语义相关性。我们通过学习多个卷积层的语义表征来进一步丰富模型特征。在 PASCAL VOC(2007 年,2012 年)和 MS-COCO 数据集上,我们的方法优于目前最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Personalized Federated Learning on long-tailed data via knowledge distillation and generated features Adaptive feature alignment for adversarial training Discrete diffusion models with Refined Language-Image Pre-trained representations for remote sensing image captioning A unified framework to stereotyped behavior detection for screening Autism Spectrum Disorder Explainable hypergraphs for gait based Parkinson classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1