{"title":"Testing for sparse idiosyncratic components in factor-augmented regression models","authors":"Jad Beyhum , Jonas Striaukas","doi":"10.1016/j.jeconom.2024.105845","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel bootstrap test of a dense model, namely factor regression, against a sparse plus dense alternative model augmented with sparse idiosyncratic components. The asymptotic properties of the test are established under time series dependence and polynomial tails. We outline a data-driven rule to select the tuning parameter and prove its theoretical validity. In simulation experiments, our procedure exhibits high power against sparse alternatives and low power against dense deviations from the null. Moreover, we apply our test to various datasets in macroeconomics and finance and often reject the null. This suggests the presence of sparsity — on top of a dense component — in commonly studied economic applications. The R package ‘<span>FAS</span>’ implements our approach.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"244 1","pages":"Article 105845"},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001908","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel bootstrap test of a dense model, namely factor regression, against a sparse plus dense alternative model augmented with sparse idiosyncratic components. The asymptotic properties of the test are established under time series dependence and polynomial tails. We outline a data-driven rule to select the tuning parameter and prove its theoretical validity. In simulation experiments, our procedure exhibits high power against sparse alternatives and low power against dense deviations from the null. Moreover, we apply our test to various datasets in macroeconomics and finance and often reject the null. This suggests the presence of sparsity — on top of a dense component — in commonly studied economic applications. The R package ‘FAS’ implements our approach.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.