Peng Zhang , Xinlei Zhao , Lijia Dong , Weimin Lei , Wei Zhang , Zhaonan Lin
{"title":"A framework for detecting fighting behavior based on key points of human skeletal posture","authors":"Peng Zhang , Xinlei Zhao , Lijia Dong , Weimin Lei , Wei Zhang , Zhaonan Lin","doi":"10.1016/j.cviu.2024.104123","DOIUrl":null,"url":null,"abstract":"<div><p>Detecting fights from videos and images in public surveillance places is an important task to limit violent criminal behavior. Real-time detection of violent behavior can effectively ensure the personal safety of pedestrians and further maintain public social stability. Therefore, in this paper, we aim to detect real-time violent behavior in videos. We propose a novel neural network model framework based on human pose key points, called Real-Time Pose Net (RTPNet). Utilize the pose extractor (YOLO-Pose) to extract human skeleton features, and classify video level violent behavior based on the 2DCNN model (ACTION-Net). Utilize appearance features and inter frame correlation to accurately detect fighting behavior. We have also proposed a new image dataset called VIMD (Violence Image Dataset), which includes images of fighting behavior collected online and captured independently. After training on the dataset, the network can effectively identify skeletal features from videos and locate fighting movements. The dataset is available on GitHub (<span><span>https://github.com/ChinaZhangPeng/Violence-Image-Dataset</span><svg><path></path></svg></span>). We also conducted experiments on four datasets, including Hockey-Fight, RWF-2000, Surveillance Camera Fight, and AVD dataset. These experimental results showed that RTPNet outperformed the most advanced methods in the past, achieving an accuracy of 99.4% on the Hockey-Fight dataset, 93.3% on the RWF-2000 dataset, and 93.4% on the Surveillance Camera Fight dataset, 99.3% on the AVD dataset. And with speeds capable of reaching 33fps, state-of-the-art results are achieved with faster speeds. In addition, RTPNet can also have good detection performance in violent behavior in complex backgrounds.</p></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"248 ","pages":"Article 104123"},"PeriodicalIF":4.3000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002042","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting fights from videos and images in public surveillance places is an important task to limit violent criminal behavior. Real-time detection of violent behavior can effectively ensure the personal safety of pedestrians and further maintain public social stability. Therefore, in this paper, we aim to detect real-time violent behavior in videos. We propose a novel neural network model framework based on human pose key points, called Real-Time Pose Net (RTPNet). Utilize the pose extractor (YOLO-Pose) to extract human skeleton features, and classify video level violent behavior based on the 2DCNN model (ACTION-Net). Utilize appearance features and inter frame correlation to accurately detect fighting behavior. We have also proposed a new image dataset called VIMD (Violence Image Dataset), which includes images of fighting behavior collected online and captured independently. After training on the dataset, the network can effectively identify skeletal features from videos and locate fighting movements. The dataset is available on GitHub (https://github.com/ChinaZhangPeng/Violence-Image-Dataset). We also conducted experiments on four datasets, including Hockey-Fight, RWF-2000, Surveillance Camera Fight, and AVD dataset. These experimental results showed that RTPNet outperformed the most advanced methods in the past, achieving an accuracy of 99.4% on the Hockey-Fight dataset, 93.3% on the RWF-2000 dataset, and 93.4% on the Surveillance Camera Fight dataset, 99.3% on the AVD dataset. And with speeds capable of reaching 33fps, state-of-the-art results are achieved with faster speeds. In addition, RTPNet can also have good detection performance in violent behavior in complex backgrounds.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems