{"title":"Time series analysis of sea surface temperature change in the coastal seas of Türkiye","authors":"Mehmet Bilgili , Tahir Durhasan , Engin Pinar","doi":"10.1016/j.jastp.2024.106339","DOIUrl":null,"url":null,"abstract":"<div><p>Sea surface temperature (SST) is a crucial geophysical parameter in assessing heat exchange between the air and sea surface. Changes in SST and its accurate prediction play a pivotal role in explaining the global heat balance, determining atmospheric circulations, and constructing global climate models. This work aims to reveal a model for one-month-ahead forecasting of SST time series data along the Türkiye coasts, encompassing the Mediterranean, Aegean, Marmara, and Black Seas, and their long-term future forecast. A long short-term memory (LSTM) neural network and seasonal autoregressive integrated moving average (SARIMA) models are used for this purpose. The ECMWF ERA5 (0.5<sup>o</sup>x0.5°) monthly SST dataset spanning the years 1970–2023 is used for model development. The results obtained from the LSTM and SARIMA models show that there will be an increasing trend in SSTs along these seacoasts until 2050. The SST measurements of 23.4 °C, 20.2 °C, 17.0 °C, and 16.6 °C recorded along the Mediterranean, Aegean, Marmara, and Black Seas in 2023 are expected to rise to 25.1 °C, 21.9 °C, 18.1 °C, and 18.8 °C, respectively, by 2050. These figures indicate an increase of 7.3%, 8.4%, 6.5%, and 13.3% in the SST values across these coastal seas over the next quarter century.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"263 ","pages":"Article 106339"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001676","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sea surface temperature (SST) is a crucial geophysical parameter in assessing heat exchange between the air and sea surface. Changes in SST and its accurate prediction play a pivotal role in explaining the global heat balance, determining atmospheric circulations, and constructing global climate models. This work aims to reveal a model for one-month-ahead forecasting of SST time series data along the Türkiye coasts, encompassing the Mediterranean, Aegean, Marmara, and Black Seas, and their long-term future forecast. A long short-term memory (LSTM) neural network and seasonal autoregressive integrated moving average (SARIMA) models are used for this purpose. The ECMWF ERA5 (0.5ox0.5°) monthly SST dataset spanning the years 1970–2023 is used for model development. The results obtained from the LSTM and SARIMA models show that there will be an increasing trend in SSTs along these seacoasts until 2050. The SST measurements of 23.4 °C, 20.2 °C, 17.0 °C, and 16.6 °C recorded along the Mediterranean, Aegean, Marmara, and Black Seas in 2023 are expected to rise to 25.1 °C, 21.9 °C, 18.1 °C, and 18.8 °C, respectively, by 2050. These figures indicate an increase of 7.3%, 8.4%, 6.5%, and 13.3% in the SST values across these coastal seas over the next quarter century.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.