Roger Kober , Marcio Schwaab , Elisa Barbosa-Coutinho , André Luis Alberton , José Carlos Pinto
{"title":"Cyclohexane dehydrogenation: Critical evaluation of parameter estimation procedures for kinetic modeling","authors":"Roger Kober , Marcio Schwaab , Elisa Barbosa-Coutinho , André Luis Alberton , José Carlos Pinto","doi":"10.1016/j.cattod.2024.114993","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper a comparison between different parameter estimation procedures commonly used for the kinetic modeling of chemical reaction is performed, based on experimental measurements of the cyclohexane dehydrogenation to benzene. The obtained results show that, when the Arrhenius equation parameters are estimated from estimates of the rate constant taken at different temperatures, larger parameter uncertainties and correlations are obtained, particularly when the variances of the experimental measurements are not considered during the estimation process. It is also observed that an apparent kinetic compensation effect occurs when the experimental data are separated according to the inlet partial pressure and catalyst mass in the reactor, mainly due to the existing and unavoidable experimental uncertainties and parameter correlations. Additionally, it is shown that larger uncertainties and correlations are obtained when the parameter estimates are computed through the differential method, which can also lead to poorer model predictions of the experimental data. Finally, it is shown that the simultaneous one-step estimation of all model parameters through the integral method and considering the available experimental uncertainties can provide the most accurate parameter estimates, making use of mathematical expressions that describe how variances of the experimental measurements depend on the experimental conditions.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"444 ","pages":"Article 114993"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124004875","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the present paper a comparison between different parameter estimation procedures commonly used for the kinetic modeling of chemical reaction is performed, based on experimental measurements of the cyclohexane dehydrogenation to benzene. The obtained results show that, when the Arrhenius equation parameters are estimated from estimates of the rate constant taken at different temperatures, larger parameter uncertainties and correlations are obtained, particularly when the variances of the experimental measurements are not considered during the estimation process. It is also observed that an apparent kinetic compensation effect occurs when the experimental data are separated according to the inlet partial pressure and catalyst mass in the reactor, mainly due to the existing and unavoidable experimental uncertainties and parameter correlations. Additionally, it is shown that larger uncertainties and correlations are obtained when the parameter estimates are computed through the differential method, which can also lead to poorer model predictions of the experimental data. Finally, it is shown that the simultaneous one-step estimation of all model parameters through the integral method and considering the available experimental uncertainties can provide the most accurate parameter estimates, making use of mathematical expressions that describe how variances of the experimental measurements depend on the experimental conditions.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.