A low-time-consumption image encryption combining 2D parametric Pascal matrix chaotic system and elementary operation

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-28 DOI:10.1016/j.jksuci.2024.102169
Jun Lu , Jiaxin Zhang , Dezhi An , Dawei Hao , Xiaokai Ren , Ruoyu Zhao
{"title":"A low-time-consumption image encryption combining 2D parametric Pascal matrix chaotic system and elementary operation","authors":"Jun Lu ,&nbsp;Jiaxin Zhang ,&nbsp;Dezhi An ,&nbsp;Dawei Hao ,&nbsp;Xiaokai Ren ,&nbsp;Ruoyu Zhao","doi":"10.1016/j.jksuci.2024.102169","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid development of the big data era has resulted in traditional image encryption algorithms consuming more time in handling the huge amount of data. The consumption of time cost needs to be reduced while ensuring the security of encryption algorithms. With this in mind, the paper proposes a low-time-consumption image encryption (LTC-IE) combining 2D parametric Pascal matrix chaotic system (2D-PPMCS) and elementary operation. First, the 2D-PPMCS with robustness and complex chaotic behavior is adopted. Second, the SHA-256 hash values are applied to the chaotic sequences generated by 2D-PPMCS, which are processed and applied to image permutation and diffusion encryption. In the permutation stage, the pixel matrix is permutation encrypted based on the permutation matrix generated from the chaotic sequences. For diffusion encryption, elementary operations are utilized to construct the model, such as exclusive or, modulo, and arithmetic operations (addition, subtraction, multiplication, and division). After analyzing the security experiments, the LTC-IE algorithm ensures security and robustness while reducing the time cost consumption.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 8","pages":"Article 102169"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002581/pdfft?md5=db7fa2d27baba2dde9365c9407528c9f&pid=1-s2.0-S1319157824002581-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002581","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of the big data era has resulted in traditional image encryption algorithms consuming more time in handling the huge amount of data. The consumption of time cost needs to be reduced while ensuring the security of encryption algorithms. With this in mind, the paper proposes a low-time-consumption image encryption (LTC-IE) combining 2D parametric Pascal matrix chaotic system (2D-PPMCS) and elementary operation. First, the 2D-PPMCS with robustness and complex chaotic behavior is adopted. Second, the SHA-256 hash values are applied to the chaotic sequences generated by 2D-PPMCS, which are processed and applied to image permutation and diffusion encryption. In the permutation stage, the pixel matrix is permutation encrypted based on the permutation matrix generated from the chaotic sequences. For diffusion encryption, elementary operations are utilized to construct the model, such as exclusive or, modulo, and arithmetic operations (addition, subtraction, multiplication, and division). After analyzing the security experiments, the LTC-IE algorithm ensures security and robustness while reducing the time cost consumption.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种结合二维参数帕斯卡矩阵混沌系统和基本运算的低耗时图像加密方法
大数据时代的快速发展导致传统图像加密算法在处理海量数据时耗费更多时间。在保证加密算法安全性的同时,还需要降低时间成本的消耗。有鉴于此,本文提出了一种结合二维参数帕斯卡矩阵混沌系统(2D-PPMCS)和基本运算的低耗时图像加密(LTC-IE)。首先,采用具有鲁棒性和复杂混沌行为的二维参数帕斯卡矩阵混沌系统。其次,将 SHA-256 哈希值应用于 2D-PPMCS 生成的混沌序列,经过处理后应用于图像置换和扩散加密。在置换阶段,根据混沌序列生成的置换矩阵对像素矩阵进行置换加密。在扩散加密阶段,利用基本运算来构建模型,如排他性或、模和算术运算(加、减、乘、除)。经过安全实验分析,LTC-IE 算法在降低时间成本消耗的同时,确保了安全性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
期刊最新文献
Visually meaningful image encryption for secure and authenticated data transmission using chaotic maps Leukocyte segmentation based on DenseREU-Net Knowledge-embedded multi-layer collaborative adaptive fusion network: Addressing challenges in foggy conditions and complex imaging Feature-fused residual network for time series classification Low-light image enhancement: A comprehensive review on methods, datasets and evaluation metrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1