Myeloid C-type lectin receptors in host–pathogen interactions and glycan-based targeting

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-08-29 DOI:10.1016/j.cbpa.2024.102521
Felix Stegmann , Bernd Lepenies
{"title":"Myeloid C-type lectin receptors in host–pathogen interactions and glycan-based targeting","authors":"Felix Stegmann ,&nbsp;Bernd Lepenies","doi":"10.1016/j.cbpa.2024.102521","DOIUrl":null,"url":null,"abstract":"<div><p>Lectin–glycan interactions play a crucial role in the immune system. An important class of lectins in the innate immune system is myeloid C-type lectin receptors (CLRs). Myeloid CLRs act as pattern recognition receptors and are predominantly expressed by myeloid cells, such as macrophages, dendritic cells, and neutrophils. In innate immunity, CLRs contribute to self/non-self discrimination. While the recognition of pathogen-associated molecular patterns (PAMPs) by CLRs may contribute to a protective immune response, CLR engagement can also be exploited by pathogens for immune evasion. Since various CLRs act as endocytic receptors and trigger distinct signaling pathways in myeloid cells, CLR targeting has proven useful for drug/antigen delivery into antigen-presenting cells and the modulation of immune responses. This review covers recent discoveries of pathogen/CLR interactions and novel approaches for CLR targeting within the period of the past two years.</p></div>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000978/pdfft?md5=306dced818d81a5ca24ab6335f230013&pid=1-s2.0-S1367593124000978-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000978","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lectin–glycan interactions play a crucial role in the immune system. An important class of lectins in the innate immune system is myeloid C-type lectin receptors (CLRs). Myeloid CLRs act as pattern recognition receptors and are predominantly expressed by myeloid cells, such as macrophages, dendritic cells, and neutrophils. In innate immunity, CLRs contribute to self/non-self discrimination. While the recognition of pathogen-associated molecular patterns (PAMPs) by CLRs may contribute to a protective immune response, CLR engagement can also be exploited by pathogens for immune evasion. Since various CLRs act as endocytic receptors and trigger distinct signaling pathways in myeloid cells, CLR targeting has proven useful for drug/antigen delivery into antigen-presenting cells and the modulation of immune responses. This review covers recent discoveries of pathogen/CLR interactions and novel approaches for CLR targeting within the period of the past two years.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
髓系 C 型凝集素受体在宿主-病原体相互作用和基于聚糖的靶向中的作用
凝集素与糖的相互作用在免疫系统中起着至关重要的作用。髓系 C 型凝集素受体(CLR)是先天性免疫系统中的一类重要凝集素。髓系 C 型凝集素受体是一种模式识别受体,主要由髓系细胞(如巨噬细胞、树突状细胞和中性粒细胞)表达。在先天性免疫中,CLRs 有助于自我/非自我识别。虽然 CLRs 识别病原体相关分子模式(PAMPs)可能有助于保护性免疫反应,但病原体也可能利用 CLRs 参与免疫逃避。由于各种 CLR 可作为内细胞受体并触发髓系细胞中不同的信号通路,因此 CLR 靶向已被证明可用于将药物/抗原递送至抗原递呈细胞并调节免疫反应。本综述涵盖了过去两年中病原体/CLR相互作用的最新发现以及CLR靶向的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1