Cell comparative learning: A cervical cytopathology whole slide image classification method using normal and abnormal cells

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Computerized Medical Imaging and Graphics Pub Date : 2024-08-28 DOI:10.1016/j.compmedimag.2024.102427
Jian Qin , Yongjun He , Yiqin Liang , Lanlan Kang , Jing Zhao , Bo Ding
{"title":"Cell comparative learning: A cervical cytopathology whole slide image classification method using normal and abnormal cells","authors":"Jian Qin ,&nbsp;Yongjun He ,&nbsp;Yiqin Liang ,&nbsp;Lanlan Kang ,&nbsp;Jing Zhao ,&nbsp;Bo Ding","doi":"10.1016/j.compmedimag.2024.102427","DOIUrl":null,"url":null,"abstract":"<div><p>Automated cervical cancer screening through computer-assisted diagnosis has shown considerable potential to improve screening accessibility and reduce associated costs and errors. However, classification performance on whole slide images (WSIs) remains suboptimal due to patient-specific variations. To improve the precision of the screening, pathologists not only analyze the characteristics of suspected abnormal cells, but also compare them with normal cells. Motivated by this practice, we propose a novel cervical cell comparative learning method that leverages pathologist knowledge to learn the differences between normal and suspected abnormal cells within the same WSI. Our method employs two pre-trained YOLOX models to detect suspected abnormal and normal cells in a given WSI. A self-supervised model then extracts features for the detected cells. Subsequently, a tailored Transformer encoder fuses the cell features to obtain WSI instance embeddings. Finally, attention-based multi-instance learning is applied to achieve classification. The experimental results show an AUC of 0.9319 for our proposed method. Moreover, the method achieved professional pathologist-level performance, indicating its potential for clinical applications.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"117 ","pages":"Article 102427"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001046","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Automated cervical cancer screening through computer-assisted diagnosis has shown considerable potential to improve screening accessibility and reduce associated costs and errors. However, classification performance on whole slide images (WSIs) remains suboptimal due to patient-specific variations. To improve the precision of the screening, pathologists not only analyze the characteristics of suspected abnormal cells, but also compare them with normal cells. Motivated by this practice, we propose a novel cervical cell comparative learning method that leverages pathologist knowledge to learn the differences between normal and suspected abnormal cells within the same WSI. Our method employs two pre-trained YOLOX models to detect suspected abnormal and normal cells in a given WSI. A self-supervised model then extracts features for the detected cells. Subsequently, a tailored Transformer encoder fuses the cell features to obtain WSI instance embeddings. Finally, attention-based multi-instance learning is applied to achieve classification. The experimental results show an AUC of 0.9319 for our proposed method. Moreover, the method achieved professional pathologist-level performance, indicating its potential for clinical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞比较学习:使用正常和异常细胞的宫颈细胞病理学全玻片图像分类方法
通过计算机辅助诊断进行宫颈癌自动筛查在提高筛查的可及性、降低相关成本和减少误差方面具有相当大的潜力。然而,由于患者的个体差异,整张切片图像(WSI)的分类性能仍不理想。为了提高筛查的精确度,病理学家不仅要分析疑似异常细胞的特征,还要将它们与正常细胞进行比较。受这种做法的启发,我们提出了一种新颖的宫颈细胞比较学习方法,利用病理学家的知识来学习同一 WSI 中正常细胞和疑似异常细胞之间的差异。我们的方法采用两个预先训练好的 YOLOX 模型来检测给定 WSI 中的疑似异常细胞和正常细胞。然后,一个自监督模型提取检测到的细胞的特征。随后,量身定制的 Transformer 编码器会融合细胞特征,从而获得 WSI 实例嵌入。最后,应用基于注意力的多实例学习来实现分类。实验结果显示,我们提出的方法的 AUC 为 0.9319。此外,该方法还达到了专业病理学家的水平,这表明它具有临床应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
期刊最新文献
Exploring transformer reliability in clinically significant prostate cancer segmentation: A comprehensive in-depth investigation. DSIFNet: Implicit feature network for nasal cavity and vestibule segmentation from 3D head CT AFSegNet: few-shot 3D ankle-foot bone segmentation via hierarchical feature distillation and multi-scale attention and fusion VLFATRollout: Fully transformer-based classifier for retinal OCT volumes WISE: Efficient WSI selection for active learning in histopathology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1