F-actin microfilaments affect the LIPUS-promoted osteogenic differentiation of BMSCs through TRPM7

IF 3.2 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Biotechnology Journal Pub Date : 2024-08-30 DOI:10.1002/biot.202400310
Huan Yao, Li Tang, Dong Wang, Hua Pang, Ke Yang
{"title":"F-actin microfilaments affect the LIPUS-promoted osteogenic differentiation of BMSCs through TRPM7","authors":"Huan Yao,&nbsp;Li Tang,&nbsp;Dong Wang,&nbsp;Hua Pang,&nbsp;Ke Yang","doi":"10.1002/biot.202400310","DOIUrl":null,"url":null,"abstract":"<p>The differentiation of bone marrow mesenchymal stem cells (BMSCs) toward osteogenesis can be induced by low-intensity pulsed ultrasound (LIPUS). However, the molecular mechanisms responsible for LIPUS stimulation are unclear. The possible molecular mechanisms by which LIPUS promotes osteogenic differentiation of BMSCs were investigated in this study. The quantification of alkaline phosphatase (ALP) activity, Alizarin Red S staining, ALP staining, and the establishment of a calvarial defect model were used to evaluate osteogenic effects. Immunofluorescence was performed to observe the expression of microfilaments and transient receptor potential melastatin 7 (TRPM7). The levels of F-actin/G-actin and osteogenesis-related proteins under LIPUS alone or LIPUS combined with cytoskeleton interfering drugs (Cytochalasin D [CytoD] or Jasplakinolide [JA]) were assayed by western blot. Quantitative real-time reverse transcription polymerase chain reaction was utilized to measure the expression of <i>Trpm7</i> mRNA. Moreover, adenoviral <i>Trpm7</i> knockdown was verified using western blot. The results demonstrated that LIPUS promoted bone formation in vivo. Under osteogenic induction in vitro, the osteogenesis of BMSCs induced by LIPUS was accompanied by the depolymerization and rearrangement of microfilaments and increased levels of TRPM7. By perturbing intracellular actin dynamics, CytoD enhanced the pro-osteogenicity of LIPUS and increased TRPM7 level, while JA inhibited the pro-osteogenicity of LIPUS and reduced TRPM7 level. Additionally, the knockdown of <i>Trpm7</i> suppressed the osteogenic promotion of BMSCs induced by LIPUS. The transient depolymerization and rearrangement of the cytoskeleton microfilaments mediated by LIPUS can affect TRPM7 expression and subsequently promote the osteogenesis of BMSCs. This study provides further direction for exploring the molecular mechanism of LIPUS, as a mechanical stress, in facilitating the osteogenic differentiation of BMSCs.</p>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 8","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400310","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The differentiation of bone marrow mesenchymal stem cells (BMSCs) toward osteogenesis can be induced by low-intensity pulsed ultrasound (LIPUS). However, the molecular mechanisms responsible for LIPUS stimulation are unclear. The possible molecular mechanisms by which LIPUS promotes osteogenic differentiation of BMSCs were investigated in this study. The quantification of alkaline phosphatase (ALP) activity, Alizarin Red S staining, ALP staining, and the establishment of a calvarial defect model were used to evaluate osteogenic effects. Immunofluorescence was performed to observe the expression of microfilaments and transient receptor potential melastatin 7 (TRPM7). The levels of F-actin/G-actin and osteogenesis-related proteins under LIPUS alone or LIPUS combined with cytoskeleton interfering drugs (Cytochalasin D [CytoD] or Jasplakinolide [JA]) were assayed by western blot. Quantitative real-time reverse transcription polymerase chain reaction was utilized to measure the expression of Trpm7 mRNA. Moreover, adenoviral Trpm7 knockdown was verified using western blot. The results demonstrated that LIPUS promoted bone formation in vivo. Under osteogenic induction in vitro, the osteogenesis of BMSCs induced by LIPUS was accompanied by the depolymerization and rearrangement of microfilaments and increased levels of TRPM7. By perturbing intracellular actin dynamics, CytoD enhanced the pro-osteogenicity of LIPUS and increased TRPM7 level, while JA inhibited the pro-osteogenicity of LIPUS and reduced TRPM7 level. Additionally, the knockdown of Trpm7 suppressed the osteogenic promotion of BMSCs induced by LIPUS. The transient depolymerization and rearrangement of the cytoskeleton microfilaments mediated by LIPUS can affect TRPM7 expression and subsequently promote the osteogenesis of BMSCs. This study provides further direction for exploring the molecular mechanism of LIPUS, as a mechanical stress, in facilitating the osteogenic differentiation of BMSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
F-肌动蛋白微丝通过 TRPM7 影响 LIPUS 促进的 BMSCs 成骨分化
低强度脉冲超声(LIPUS)可诱导骨髓间充质干细胞(BMSCs)向成骨方向分化。然而,LIPUS刺激的分子机制尚不清楚。本研究探讨了 LIPUS 促进 BMSCs 成骨分化的可能分子机制。研究采用碱性磷酸酶(ALP)活性定量、茜素红 S 染色、ALP 染色和建立腓骨缺损模型来评估成骨效应。免疫荧光观察了微丝和瞬时受体电位美司他丁 7(TRPM7)的表达。在单独使用LIPUS或LIPUS与细胞骨架干扰药物(细胞松素D[CytoD]或Jasplakinolide[JA])联合使用的情况下,用Western印迹法测定F-肌动蛋白/G-肌动蛋白和成骨相关蛋白的水平。利用定量实时逆转录聚合酶链反应测定 Trpm7 mRNA 的表达。此外,还利用 Western 印迹验证了腺病毒 Trpm7 的基因敲除。结果表明,LIPUS能促进体内骨形成。在体外成骨诱导条件下,LIPUS诱导的BMSCs成骨伴随着微丝的解聚和重排以及TRPM7水平的升高。通过扰乱细胞内肌动蛋白动力学,CytoD增强了LIPUS的促成骨作用并提高了TRPM7的水平,而JA抑制了LIPUS的促成骨作用并降低了TRPM7的水平。此外,Trpm7的敲除抑制了LIPUS诱导的BMSCs成骨促进作用。LIPUS介导的细胞骨架微丝的瞬时解聚和重排可影响TRPM7的表达,进而促进BMSCs的成骨。这项研究为进一步探索LIPUS作为一种机械应力促进BMSCs成骨分化的分子机制提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Journal
Biotechnology Journal Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍: Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances. In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office. BTJ promotes a special emphasis on: Systems Biotechnology Synthetic Biology and Metabolic Engineering Nanobiotechnology and Biomaterials Tissue engineering, Regenerative Medicine and Stem cells Gene Editing, Gene therapy and Immunotherapy Omics technologies Industrial Biotechnology, Biopharmaceuticals and Biocatalysis Bioprocess engineering and Downstream processing Plant Biotechnology Biosafety, Biotech Ethics, Science Communication Methods and Advances.
期刊最新文献
Construction of a Cell Factory for the Targeted and Efficient Production of Phytosterol to Boldenone in Mycobacterium neoaurum L-Asparaginase from Lachancea Thermotolerans: Effect of Lys99Ala on Enzyme Performance and in vitro Antileukemic Efficacy Multifunctional PAMAM Dendrimers Carrying SAHA, 5-FU, and a Therapeutic Gene for Targeted Co-Delivery Toward Colorectal Cancer Cells An Experimental and Modeling Approach to Study Tangential Flow Filtration Performance for mRNA Drug Substance Purification Engineering Regioselectivity of P450 BM3 Enables the Biosynthesis of Murideoxycholic Acid by 6β-Hydroxylation of Lithocholic Acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1