Decentralized Optimal Power Flow for Multi-Agent Active Distribution Networks: A Differentially Private Consensus ADMM Algorithm

IF 8.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Smart Grid Pub Date : 2024-08-29 DOI:10.1109/TSG.2024.3451793
Chao Lei;Siqi Bu;Qifan Chen;Qianggang Wang;Qin Wang;Dipti Srinivasan
{"title":"Decentralized Optimal Power Flow for Multi-Agent Active Distribution Networks: A Differentially Private Consensus ADMM Algorithm","authors":"Chao Lei;Siqi Bu;Qifan Chen;Qianggang Wang;Qin Wang;Dipti Srinivasan","doi":"10.1109/TSG.2024.3451793","DOIUrl":null,"url":null,"abstract":"In multi-agent active distribution networks, the information exchanges in the ADMM algorithm for the decentralized distribution-level optimal power flow (D-OPF) may expose sensitive load flows of tie-lines across adjacent agents. This may be overheard by adversarial agents for business competition. To preserve this privacy, this paper proposes a differentially private consensus ADMM (DP-C-ADMM) algorithm, which can offer a mixture solution of both realistically optimal generator outputs and obfuscated-but-feasible load flows of tie-lines. And \n<inline-formula> <tex-math>$\\epsilon -$ </tex-math></inline-formula>\ndifferential privacy holds for load flows of tie-lines across agents over iterations. Case study justifies the theoretical properties of this algorithm up to specified privacy parameters.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":"15 6","pages":"6175-6178"},"PeriodicalIF":8.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10659236/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In multi-agent active distribution networks, the information exchanges in the ADMM algorithm for the decentralized distribution-level optimal power flow (D-OPF) may expose sensitive load flows of tie-lines across adjacent agents. This may be overheard by adversarial agents for business competition. To preserve this privacy, this paper proposes a differentially private consensus ADMM (DP-C-ADMM) algorithm, which can offer a mixture solution of both realistically optimal generator outputs and obfuscated-but-feasible load flows of tie-lines. And $\epsilon -$ differential privacy holds for load flows of tie-lines across agents over iterations. Case study justifies the theoretical properties of this algorithm up to specified privacy parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多代理主动配电网络的分散式最佳功率流:一种差分私有共识 ADMM 算法
在多代理主动配电网络中,分散式配电级最佳功率流 (D-OPF) 的 ADMM 算法中的信息交换可能会暴露相邻代理之间连接线的敏感负荷流。这可能会被商业竞争中的敌对代理偷听到。为了保护这种隐私,本文提出了一种差异化私有共识 ADMM(DP-C-ADMM)算法,它可以提供现实最优发电机输出和模糊但可行的领带线负载流的混合解。在迭代过程中,各代理之间的领带线负载流的$epsilon -$差分隐私性是成立的。案例研究证明了该算法在指定隐私参数范围内的理论特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Smart Grid
IEEE Transactions on Smart Grid ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
22.10
自引率
9.40%
发文量
526
审稿时长
6 months
期刊介绍: The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.
期刊最新文献
Consecutive Load Redistribution Attack Without Line Admittance Information Joint Energy-Computation Management for Electric Vehicles under Coordination of Power Distribution Networks and Computing Power Networks Coordination of Multi-Agent Orderly Charging Via An Incentive-Compatible Mechanism Multi-Time Scale Model Predictive Control-Based Demand Side Management for a Microgrid Peak Shaving Control for a Virtual Synchronous Generator in Island Grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1