Madeline E. Scyphers , Justine E.C. Missik , Haley Kujawa , Joel A. Paulson , Gil Bohrer
{"title":"Bayesian Optimization for Anything (BOA): An open-source framework for accessible, user-friendly Bayesian optimization","authors":"Madeline E. Scyphers , Justine E.C. Missik , Haley Kujawa , Joel A. Paulson , Gil Bohrer","doi":"10.1016/j.envsoft.2024.106191","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce Bayesian Optimization for Anything (BOA), a high-level Bayesian Optimization (BO) framework and model wrapping toolkit, which presents a novel approach to simplifying BO, with the goal of making it more accessible and user-friendly, particularly for those with limited expertise in the field. BOA addresses common barriers in implementing BO, focusing on ease of use, reducing the need for deep domain knowledge, and cutting down on extensive coding requirements. A notable feature of BOA is its language-agnostic architecture, which facilitates broader application in various fields and to a wider audience. We showcase BOA's application through three examples: a high-dimensional optimization with 184 parameters of the SWAT + watershed model, a highly parallelized optimization of this intrinsically non-parallel model, and a multi-objective optimization of the FETCH Tree-Crown Hydrodynamics model. These test cases illustrate BOA's effectiveness in addressing complex optimization challenges in diverse scenarios.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"182 ","pages":"Article 106191"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224002524","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce Bayesian Optimization for Anything (BOA), a high-level Bayesian Optimization (BO) framework and model wrapping toolkit, which presents a novel approach to simplifying BO, with the goal of making it more accessible and user-friendly, particularly for those with limited expertise in the field. BOA addresses common barriers in implementing BO, focusing on ease of use, reducing the need for deep domain knowledge, and cutting down on extensive coding requirements. A notable feature of BOA is its language-agnostic architecture, which facilitates broader application in various fields and to a wider audience. We showcase BOA's application through three examples: a high-dimensional optimization with 184 parameters of the SWAT + watershed model, a highly parallelized optimization of this intrinsically non-parallel model, and a multi-objective optimization of the FETCH Tree-Crown Hydrodynamics model. These test cases illustrate BOA's effectiveness in addressing complex optimization challenges in diverse scenarios.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.