A sophisticated mechanism governs Pol ζ activity in response to replication stress

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-08-31 DOI:10.1038/s41467-024-52112-z
Chun Li, Shuchen Fan, Pan Li, Yuzhen Bai, Ye Wang, Yueyun Cui, Mengdi Li, Ruru Wang, Yuan Shao, Yingying Wang, Shuo Zheng, Rong Wang, Lijun Gao, Miaomiao Li, Yuanyuan Zheng, Fengting Wang, Sihang Gao, Shiguo Feng, Jianing Wang, Xinqi Qu, Xialu Li
{"title":"A sophisticated mechanism governs Pol ζ activity in response to replication stress","authors":"Chun Li, Shuchen Fan, Pan Li, Yuzhen Bai, Ye Wang, Yueyun Cui, Mengdi Li, Ruru Wang, Yuan Shao, Yingying Wang, Shuo Zheng, Rong Wang, Lijun Gao, Miaomiao Li, Yuanyuan Zheng, Fengting Wang, Sihang Gao, Shiguo Feng, Jianing Wang, Xinqi Qu, Xialu Li","doi":"10.1038/s41467-024-52112-z","DOIUrl":null,"url":null,"abstract":"<p>DNA polymerase ζ (Pol ζ) plays an essential role in replicating damaged DNA templates but contributes to mutagenesis due to its low fidelity. Therefore, ensuring tight control of Pol ζ’s activity is critical for continuous and accurate DNA replication, yet the specific mechanisms remain unclear. This study reveals a regulation mechanism of Pol ζ activity in human cells. Under normal conditions, an autoinhibition mechanism keeps the catalytic subunit, REV3L, inactive. Upon encountering replication stress, however, ATR-mediated phosphorylation of REV3L’s S279 cluster activates REV3L and triggers its degradation via a caspase-mediated pathway. This regulation confines the activity of Pol ζ, balancing its essential role against its mutations causing potential during replication stress. Overall, our findings elucidate a control scheme that fine tunes the low-fidelity polymerase activity of Pol ζ under challenging replication scenarios.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"27 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52112-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

DNA polymerase ζ (Pol ζ) plays an essential role in replicating damaged DNA templates but contributes to mutagenesis due to its low fidelity. Therefore, ensuring tight control of Pol ζ’s activity is critical for continuous and accurate DNA replication, yet the specific mechanisms remain unclear. This study reveals a regulation mechanism of Pol ζ activity in human cells. Under normal conditions, an autoinhibition mechanism keeps the catalytic subunit, REV3L, inactive. Upon encountering replication stress, however, ATR-mediated phosphorylation of REV3L’s S279 cluster activates REV3L and triggers its degradation via a caspase-mediated pathway. This regulation confines the activity of Pol ζ, balancing its essential role against its mutations causing potential during replication stress. Overall, our findings elucidate a control scheme that fine tunes the low-fidelity polymerase activity of Pol ζ under challenging replication scenarios.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种复杂的机制控制着 Pol ζ 在应对复制压力时的活性
DNA 聚合酶ζ(Pol ζ)在复制受损 DNA 模板的过程中发挥着至关重要的作用,但由于其保真度低,会导致突变。因此,确保对 Pol ζ 活性的严格控制对于持续、准确地复制 DNA 至关重要,但具体机制仍不清楚。这项研究揭示了人类细胞中 Pol ζ 活性的调控机制。在正常情况下,催化亚基REV3L处于不活跃状态。然而,在遇到复制压力时,ATR 介导的 REV3L S279 簇磷酸化会激活 REV3L,并通过树突酶介导的途径触发其降解。这种调控限制了 Pol ζ 的活性,平衡了它的重要作用和在复制压力下导致突变的潜力。总之,我们的研究结果阐明了一种控制方案,它能在具有挑战性的复制情况下微调 Pol ζ 的低保真度聚合酶活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Rare variant associations with birth weight identify genes involved in adipose tissue regulation, placental function and insulin-like growth factor signalling Potential plant extinctions with the loss of the Pleistocene mammoth steppe The small GTPase MRAS is a broken switch Modulation by NPY/NPF-like receptor underlies experience-dependent, sexually dimorphic learning Modeling bacterial interactions uncovers the importance of outliers in the coastal lignin-degrading consortium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1