Microplastics are effective carriers of bisphenol A and facilitate its escape from wastewater treatment systems.

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Environmental Science: Processes & Impacts Pub Date : 2024-08-30 DOI:10.1039/d4em00297k
Wang Li, Bo Zu, Lei Li, Jian Li, Jiawen Li, Qiujie Xiang
{"title":"Microplastics are effective carriers of bisphenol A and facilitate its escape from wastewater treatment systems.","authors":"Wang Li, Bo Zu, Lei Li, Jian Li, Jiawen Li, Qiujie Xiang","doi":"10.1039/d4em00297k","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics (MPs) pollution is a major issue in aquatic environments. Wastewater treatment plants are significant point sources of MPs, which may also be carriers of organic pollutants. We analyzed MP number, shape, color, and polymer type distribution in sewage wastewater treatment plants. The potential of MPs to act as carriers for typical organic pollutants in sewage, such as bisphenol A (BPA), was also assessed. The predominant MPs in the influent were fibers, primarily transparent and black in color, and composed of polyethylene, polypropylene, and polystyrene. During wastewater treatment, the concentration of MPs decreased from 10.89 items per L in the influent to 0.89 items per L in the treated effluent, with significant differences in treatment efficiency at different stages. In the simulated wastewater, the three predominant MPs exhibited certain adsorption capacities for bisphenol A. Changing the temperature and pH within the range expected for wastewater could interfere with the interactions between MPs and bisphenol A, with a limited impact on adsorption. The results show that although wastewater treatment plants intercept a significant amount of MP, a considerable number of them enter the aquatic environment daily because of the high volume of wastewater discharge. These MPs, which carry pollutants such as bisphenol A, may threaten the health of fish and other aquatic organisms. However, by scientifically adjusting operational parameters, wastewater treatment plants could become \"controllable sources\" of MP compound pollutants.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d4em00297k","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics (MPs) pollution is a major issue in aquatic environments. Wastewater treatment plants are significant point sources of MPs, which may also be carriers of organic pollutants. We analyzed MP number, shape, color, and polymer type distribution in sewage wastewater treatment plants. The potential of MPs to act as carriers for typical organic pollutants in sewage, such as bisphenol A (BPA), was also assessed. The predominant MPs in the influent were fibers, primarily transparent and black in color, and composed of polyethylene, polypropylene, and polystyrene. During wastewater treatment, the concentration of MPs decreased from 10.89 items per L in the influent to 0.89 items per L in the treated effluent, with significant differences in treatment efficiency at different stages. In the simulated wastewater, the three predominant MPs exhibited certain adsorption capacities for bisphenol A. Changing the temperature and pH within the range expected for wastewater could interfere with the interactions between MPs and bisphenol A, with a limited impact on adsorption. The results show that although wastewater treatment plants intercept a significant amount of MP, a considerable number of them enter the aquatic environment daily because of the high volume of wastewater discharge. These MPs, which carry pollutants such as bisphenol A, may threaten the health of fish and other aquatic organisms. However, by scientifically adjusting operational parameters, wastewater treatment plants could become "controllable sources" of MP compound pollutants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微塑料是双酚 A 的有效载体,有助于双酚 A 逃离废水处理系统。
微塑料(MPs)污染是水生环境中的一个主要问题。污水处理厂是微塑料的重要点源,也可能是有机污染物的载体。我们分析了污水处理厂中 MP 的数量、形状、颜色和聚合物类型分布。我们还评估了 MPs 作为污水中典型有机污染物(如双酚 A (BPA))载体的潜力。进水中最主要的 MPs 是纤维,主要呈透明黑色,由聚乙烯、聚丙烯和聚苯乙烯组成。在废水处理过程中,MPs 的浓度从进水的 10.89 微克/升降至处理后出水的 0.89 微克/升,不同阶段的处理效率存在显著差异。在模拟废水中,三种主要的 MPs 对双酚 A 具有一定的吸附能力。在废水的预期范围内改变温度和 pH 值会干扰 MPs 与双酚 A 之间的相互作用,对吸附的影响有限。研究结果表明,尽管污水处理厂截留了大量 MP,但由于废水排放量大,每天都有相当数量的 MP 进入水生环境。这些含有双酚 A 等污染物的 MP 可能会威胁鱼类和其他水生生物的健康。然而,通过科学调整运行参数,污水处理厂可以成为 MP 复合污染物的 "可控源"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
期刊最新文献
Exploring the variability of PFAS in urban sewage: a comparison of emissions in commercial versus municipal urban areas The impact of surfaces on indoor air chemistry following cooking and cleaning Influence of Tritium Exposure Route on Vegetation Types at the Savannah River Site Depletion rates of O2-naphthenic acids from oil sands process-affected water in wetland microcosms. Combing a tunable pinhole with synchronous fluorescence spectrometry for visualization and quantification of benzo[a]pyrene at the root epidermis microstructure of Kandelia obovata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1