Chunxiao Wu, Dr. Chen Lu, Shilong Yu, Minzhe Zhang, Prof. Dr. Houyu Zhang, Prof. Dr. Ming Zhang, Prof. Dr. Feng Li
{"title":"Highly Efficient Near-Infrared Luminescent Radicals with Emission Peaks over 750 nm","authors":"Chunxiao Wu, Dr. Chen Lu, Shilong Yu, Minzhe Zhang, Prof. Dr. Houyu Zhang, Prof. Dr. Ming Zhang, Prof. Dr. Feng Li","doi":"10.1002/anie.202412483","DOIUrl":null,"url":null,"abstract":"<p>Purely organic molecules exhibiting near-infrared (NIR) emission possess considerable potential for applications in both biological and optoelectronic technological domains, owing to their inherent advantages such as cost-effectiveness, biocompatibility, and facile chemical modifiability. However, the repertoire of such molecules with emission peaks exceeding 750 nm and concurrently demonstrating high photoluminescence quantum efficiency (PLQE) remains relatively scarce due to the energy gap law. Herein, we report two open-shell NIR radical emitters, denoted as DMNA-Cz-BTM and DMNA-PyID-BTM, achieved through the strategic integration of a donor group (DMNA) onto the Cz-BTM and PyID-BTM frameworks, respectively. We found that the donor-acceptor molecular structure allows the two designed radical emitters to exhibit a charge-transfer excited state and spatially separated electron and hole levels with non-bonding characteristics. Thus, the high-frequency vibrations are effectively suppressed. Besides, the reduction of low-frequency vibrations is observed. Collectively, the non-radiative decay channel is significantly suppressed, leading to exceptional NIR PLQE values. Specifically, DMNA-Cz-BTM manifests an emission peak at 758 nm alongside a PLQE of 55 %, whereas DMNA-PyID-BTM exhibits an emission peak at 778 nm with a PLQE of 66 %. Notably, these represent the pinnacle of PLQE among metal-free organic NIR emitters with emission peaks surpassing 750 nm.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 52","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202412483","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purely organic molecules exhibiting near-infrared (NIR) emission possess considerable potential for applications in both biological and optoelectronic technological domains, owing to their inherent advantages such as cost-effectiveness, biocompatibility, and facile chemical modifiability. However, the repertoire of such molecules with emission peaks exceeding 750 nm and concurrently demonstrating high photoluminescence quantum efficiency (PLQE) remains relatively scarce due to the energy gap law. Herein, we report two open-shell NIR radical emitters, denoted as DMNA-Cz-BTM and DMNA-PyID-BTM, achieved through the strategic integration of a donor group (DMNA) onto the Cz-BTM and PyID-BTM frameworks, respectively. We found that the donor-acceptor molecular structure allows the two designed radical emitters to exhibit a charge-transfer excited state and spatially separated electron and hole levels with non-bonding characteristics. Thus, the high-frequency vibrations are effectively suppressed. Besides, the reduction of low-frequency vibrations is observed. Collectively, the non-radiative decay channel is significantly suppressed, leading to exceptional NIR PLQE values. Specifically, DMNA-Cz-BTM manifests an emission peak at 758 nm alongside a PLQE of 55 %, whereas DMNA-PyID-BTM exhibits an emission peak at 778 nm with a PLQE of 66 %. Notably, these represent the pinnacle of PLQE among metal-free organic NIR emitters with emission peaks surpassing 750 nm.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.