Cascade internal electric field dominated carbon nitride decorated with gold nanoparticles as SERS substrate for thiram assay.

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2024-12-01 Epub Date: 2024-08-28 DOI:10.1016/j.talanta.2024.126762
Shuting Zhang, Jingxuan Pei, Yanfang Zhao, Xiang Yu, Lei Yang
{"title":"Cascade internal electric field dominated carbon nitride decorated with gold nanoparticles as SERS substrate for thiram assay.","authors":"Shuting Zhang, Jingxuan Pei, Yanfang Zhao, Xiang Yu, Lei Yang","doi":"10.1016/j.talanta.2024.126762","DOIUrl":null,"url":null,"abstract":"<p><p>The development of valid chemical enhancement strategy with charge transfer (CT) for semiconductors has great scientific significance in surface-enhanced Raman scattering (SERS) technology. Herein, a phosphorus doped crystalline/amorphous polymeric carbon nitride (PCPCN) is fabricated by a facile molten salt method, and is employed as a SERS substrate for the first time. Upon the synergies of phosphatization and molten salt etching, PCPCN owns a cascaded internal electric field (IEF) due to the formation of p-n homojunction (interface-IEF) and crystalline/amorphous homojunction (bulk-IEF). The interface-IEF and bulk-IEF could effectively suppress the recombination of charge carriers and promote electron transfer between PCPCN and target methylene blue (MB), respectively. The strong CT interaction endows PCPCN substrate with superior SERS activity with an enhancement factor (EF) of 5.53 × 10<sup>5</sup>. Au nanoparticles (Au NPs) are subsequently decorated on PCPCN to introduce electromagnetic enhancement for a better SERS response. The Au/PCPCN substrate allows to reliably detect trace crystal violet, as well as the thiram residue on cherry tomato. This work offers an integrated solution to enhance CT efficiency based on collaborative homojunction and internal electric field, and may inspire the design of novel semiconductor-based SERS substrates.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126762","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of valid chemical enhancement strategy with charge transfer (CT) for semiconductors has great scientific significance in surface-enhanced Raman scattering (SERS) technology. Herein, a phosphorus doped crystalline/amorphous polymeric carbon nitride (PCPCN) is fabricated by a facile molten salt method, and is employed as a SERS substrate for the first time. Upon the synergies of phosphatization and molten salt etching, PCPCN owns a cascaded internal electric field (IEF) due to the formation of p-n homojunction (interface-IEF) and crystalline/amorphous homojunction (bulk-IEF). The interface-IEF and bulk-IEF could effectively suppress the recombination of charge carriers and promote electron transfer between PCPCN and target methylene blue (MB), respectively. The strong CT interaction endows PCPCN substrate with superior SERS activity with an enhancement factor (EF) of 5.53 × 105. Au nanoparticles (Au NPs) are subsequently decorated on PCPCN to introduce electromagnetic enhancement for a better SERS response. The Au/PCPCN substrate allows to reliably detect trace crystal violet, as well as the thiram residue on cherry tomato. This work offers an integrated solution to enhance CT efficiency based on collaborative homojunction and internal electric field, and may inspire the design of novel semiconductor-based SERS substrates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用金纳米粒子装饰的级联内电场主导氮化碳作为 SERS 基底,用于噻喃检测。
开发有效的半导体电荷转移(CT)化学增强策略对表面增强拉曼散射(SERS)技术具有重要的科学意义。本文采用简便的熔盐法制备了掺磷的结晶/非晶态聚合氮化碳(PCPCN),并首次将其用作 SERS 基底。在磷化和熔盐刻蚀的协同作用下,PCPCN 由于形成了 p-n 同质结(界面-IEF)和晶体/非晶体同质结(体-IEF)而具有级联内电场(IEF)。界面-IEF 和体型-IEF 可分别有效抑制电荷载流子的重组,促进 PCPCN 与目标亚甲基蓝(MB)之间的电子转移。强大的 CT 相互作用赋予了 PCPCN 衬底卓越的 SERS 活性,其增强因子 (EF) 为 5.53 × 105。随后,金纳米粒子(Au NPs)被装饰在 PCPCN 上,以引入电磁增强,从而获得更好的 SERS 响应。Au/PCPCN 基质可以可靠地检测痕量结晶紫以及樱桃番茄上的福美双残留物。这项工作提供了一种基于协同同质结和内电场的提高 CT 效率的综合解决方案,并可能对新型半导体 SERS 基底的设计有所启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
Cascade internal electric field dominated carbon nitride decorated with gold nanoparticles as SERS substrate for thiram assay. Fluorescent/colorimetric probe for the detection of Cr(Ⅵ) based on MIL-101(Fe)-NH2 with peroxidase-like activity. Functional DNA-Zn2+ coordination nanospheres for sensitive imaging of 8-oxyguanine DNA glycosylase activity in living cells. Highly sensitive SERS detection of melamine based on 3D Ag@porous silicon photonic crystal. Preparation of monoclonal antibodies recognizing pharmacologically active metabolites of metamizole based on rational hapten design and their application in the detection of animal-derived food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1