Therapeutic Potential of PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1 Genes in Triple-Negative Breast Cancer: Correlating Their Expression with Sensitivity to GSK 461364 and IKK 16 Drugs.
{"title":"Therapeutic Potential of PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1 Genes in Triple-Negative Breast Cancer: Correlating Their Expression with Sensitivity to GSK 461364 and IKK 16 Drugs.","authors":"Najmeh Bashari, Mohammadamin Naghizadeh, Mehrnaz Kalhor Chegini, Ensieh Sagheb Sadeghi, Atefeh Zamani, Mohammad Mahdevar","doi":"10.1007/s10528-024-10907-1","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment of triple-negative breast cancer (TNBC) has been associated with challenges due to the lack of expression of ER, PR, and HER2 receptors in tumor cells. This study aimed to identify genes with potential therapeutic targets in TNBC. Data from the cancer genome atlas regarding breast cancer (BC) were downloaded. After initial preprocessing, cancer samples were categorized into four groups: TNBC, HER2-positive, luminal A, and luminal B. Gene expression differences between these groups were calculated, focusing on genes that showed differential expression in TNBC. A protein-protein interaction network was conducted to identify hub genes among the candidate genes related to TNBC. The protein expression of candidate genes was assessed using immunohistochemistry data from the human protein atlas. Drug resistance and sensitivity associated with hub genes were identified using data from PharmacoDB. TNBC samples and the RT-qPCR method were used to confirm the results. Our findings revealed that eight genes, namely PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1, had significant upregulation at the RNA level in TNBC subgroup compared to other subgroups and could be considered hub genes in TNBC. Compared to other subgroups, their expression level in TNBC samples had high sensitivity and specificity. RT-qPCR results also demonstrated a significant increase in levels of SKA3 and PTTG1 in the TNBC compared to healthy tissue and other subgroups. The protein expression of these genes was notably high in some BC samples. PharmacoDB data showed that some candidate genes were closely linked to drug sensitivity of GSK 461364 and IKK 16. The results of this study showed a significant increase in the expression level of PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1 in TNBC compared to other BC subgroups. These genes show considerable promise as therapeutic targets for the TNBC subgroup.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10907-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The treatment of triple-negative breast cancer (TNBC) has been associated with challenges due to the lack of expression of ER, PR, and HER2 receptors in tumor cells. This study aimed to identify genes with potential therapeutic targets in TNBC. Data from the cancer genome atlas regarding breast cancer (BC) were downloaded. After initial preprocessing, cancer samples were categorized into four groups: TNBC, HER2-positive, luminal A, and luminal B. Gene expression differences between these groups were calculated, focusing on genes that showed differential expression in TNBC. A protein-protein interaction network was conducted to identify hub genes among the candidate genes related to TNBC. The protein expression of candidate genes was assessed using immunohistochemistry data from the human protein atlas. Drug resistance and sensitivity associated with hub genes were identified using data from PharmacoDB. TNBC samples and the RT-qPCR method were used to confirm the results. Our findings revealed that eight genes, namely PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1, had significant upregulation at the RNA level in TNBC subgroup compared to other subgroups and could be considered hub genes in TNBC. Compared to other subgroups, their expression level in TNBC samples had high sensitivity and specificity. RT-qPCR results also demonstrated a significant increase in levels of SKA3 and PTTG1 in the TNBC compared to healthy tissue and other subgroups. The protein expression of these genes was notably high in some BC samples. PharmacoDB data showed that some candidate genes were closely linked to drug sensitivity of GSK 461364 and IKK 16. The results of this study showed a significant increase in the expression level of PLK1, KIF4A, CDCA5, UBE2C, CDT1, SKA3, AURKB, and PTTG1 in TNBC compared to other BC subgroups. These genes show considerable promise as therapeutic targets for the TNBC subgroup.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.