Biotoxicity of paraquat to lung cells mediated by endoplasmic reticulum-mitochondria interaction.

IF 2.9 4区 生物学 Q3 CELL BIOLOGY Journal of Molecular Histology Pub Date : 2024-08-31 DOI:10.1007/s10735-024-10249-7
Ping Xiao, Shaohua Wu, Zhiyong Wang, Guoqiang Shen, Xiaofeng Shi
{"title":"Biotoxicity of paraquat to lung cells mediated by endoplasmic reticulum-mitochondria interaction.","authors":"Ping Xiao, Shaohua Wu, Zhiyong Wang, Guoqiang Shen, Xiaofeng Shi","doi":"10.1007/s10735-024-10249-7","DOIUrl":null,"url":null,"abstract":"<p><p>The high lethality caused by paraquat (PQ) poisoning has attracted much attention in public and human health due to its high toxicity and lethality. However, the understanding of the mechanism of PQ-induced apoptosis from the perspective of organelles, especially inter-organelle interactions, is still scarce. Exploring the linkage of multiple organelles during PQ poisoning and the molecular mechanisms of PQ poisoning under its mediation will help to gain insight into the mode of PQ poisoning at the organelle level. In this study, we observed that a certain dose of PQ gavage induced oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress in rat lung tissue cells. PQ toxicity led to the occurrence of Ca<sup>2+</sup> overload in the endoplasmic reticulum, and the activated BIP and CHOP pathways directly/indirectly led to the expression of apoptogenic factors Caspase family factors. In addition, PQ promoted Ca<sup>2+</sup> release from the endoplasmic reticulum and Ca<sup>2+</sup> uptake by mitochondria, which induced the disruption of Bax/Bcl-2 channel proteins in response to the IP<sub>3</sub>R/RyR/VDAC1&2/MCU Ca<sup>2+</sup> axis thereby leading to the release of CytoC, which ultimately induced endoplasmic reticulum stress and apoptotic cell death. In addition, 10 differential proteins were screened and validated by proteomics that may act as upstream and downstream active factors of mitochondria-endoplasmic reticulum interaction-mediated biotoxicity. Our findings provide new perspectives for researchers to explore the toxicity mechanisms of PQ to reduce their adverse effects.</p>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10735-024-10249-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The high lethality caused by paraquat (PQ) poisoning has attracted much attention in public and human health due to its high toxicity and lethality. However, the understanding of the mechanism of PQ-induced apoptosis from the perspective of organelles, especially inter-organelle interactions, is still scarce. Exploring the linkage of multiple organelles during PQ poisoning and the molecular mechanisms of PQ poisoning under its mediation will help to gain insight into the mode of PQ poisoning at the organelle level. In this study, we observed that a certain dose of PQ gavage induced oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress in rat lung tissue cells. PQ toxicity led to the occurrence of Ca2+ overload in the endoplasmic reticulum, and the activated BIP and CHOP pathways directly/indirectly led to the expression of apoptogenic factors Caspase family factors. In addition, PQ promoted Ca2+ release from the endoplasmic reticulum and Ca2+ uptake by mitochondria, which induced the disruption of Bax/Bcl-2 channel proteins in response to the IP3R/RyR/VDAC1&2/MCU Ca2+ axis thereby leading to the release of CytoC, which ultimately induced endoplasmic reticulum stress and apoptotic cell death. In addition, 10 differential proteins were screened and validated by proteomics that may act as upstream and downstream active factors of mitochondria-endoplasmic reticulum interaction-mediated biotoxicity. Our findings provide new perspectives for researchers to explore the toxicity mechanisms of PQ to reduce their adverse effects.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
百草枯对肺细胞的生物毒性由内质网-线粒体相互作用介导。
百草枯(PQ)中毒引起的高致死率因其毒性和致死率高而备受公众和人类健康的关注。然而,从细胞器的角度,尤其是细胞器间相互作用的角度来理解百草枯诱导细胞凋亡的机制仍然很少。探索PQ中毒过程中多种细胞器的联系及其介导下PQ中毒的分子机制,将有助于在细胞器水平上深入了解PQ中毒的模式。本研究观察到,一定剂量的PQ灌胃可诱导大鼠肺组织细胞氧化应激、线粒体功能障碍和内质网应激。PQ毒性导致内质网Ca2+超载,激活的BIP和CHOP通路直接/间接导致致凋亡因子Caspase家族因子的表达。此外,PQ 促进了内质网 Ca2+ 的释放和线粒体对 Ca2+ 的吸收,诱导了 Bax/Bcl-2 通道蛋白对 IP3R/RyR/VDAC1&2/MCU Ca2+ 轴的响应,从而导致 CytoC 的释放,最终诱导了内质网应激和细胞凋亡。此外,蛋白质组学还筛选并验证了 10 种差异蛋白,它们可能是线粒体-内质网相互作用介导的生物毒性的上游和下游活性因子。我们的发现为研究人员探索 PQ 的毒性机制以减少其不良影响提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Histology
Journal of Molecular Histology 生物-细胞生物学
CiteScore
5.90
自引率
0.00%
发文量
68
审稿时长
1 months
期刊介绍: The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes. Major research themes of particular interest include: - Cell-Cell and Cell-Matrix Interactions; - Connective Tissues; - Development and Disease; - Neuroscience. Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance. The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.
期刊最新文献
Effects of Platycodon grandiflorus on doxorubicin resistance and epithelial-mesenchymal transition of breast cancer cells via the p38 mitogen-activated protein kinase pathway. Roles of epidural block in combination with general anesthesia in stress response and immune function of patients after surgery for cervical cancer. FAM83H regulated by glis3 promotes triple-negative breast cancer tumorigenesis and activates the NF-κB signaling pathway. Correction: Dendrobine alleviates oleic acid-induced lipid accumulation by inhibiting FOS/METTL14 pathway. Effects of diazinon on the ovarian tissue of rats: a histochemical and ultrastructural study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1