Constant-pH MD simulations of the protonation-triggered conformational switching in diphtheria toxin translocation domain.

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2024-12-17 Epub Date: 2024-08-30 DOI:10.1016/j.bpj.2024.08.023
Nuno F B Oliveira, Alexey S Ladokhin, Miguel Machuqueiro
{"title":"Constant-pH MD simulations of the protonation-triggered conformational switching in diphtheria toxin translocation domain.","authors":"Nuno F B Oliveira, Alexey S Ladokhin, Miguel Machuqueiro","doi":"10.1016/j.bpj.2024.08.023","DOIUrl":null,"url":null,"abstract":"<p><p>Protonation of key residues in the diphtheria toxin translocation (T)-domain triggered by endosomal acidification is critical for inducing a series of conformational transitions critical for the cellular entry of the toxin. Previous experiments revealed the importance of histidine residues in modulating pH-dependent transitions. They suggested the presence of a \"safety latch\" preventing premature refolding of the T-domain by a yet poorly understood mechanism. Here, we used constant-pH molecular dynamics simulations to systematically investigate the protonation sequence in the wild-type T-domain and the following mutants: H223Q, H257Q, E259Q, and H223Q/H257Q. Comparison of these computational results with previous experimental data on T-domain stability and activity with the H-to-Q replacements confirms the role of H223 (pK<sub>a</sub> = 6.5) in delaying the protonation of the main trigger, H257 (pK<sub>a</sub> = 2.2 in the WT and pK<sub>a</sub> = 4.9 in H223Q). Our calculations also reveal a very low pK<sub>a</sub> for a neighboring acidic residue E259, which does not get protonated even during simulations at pH 3. This residue also contributes to the formation of the safety latch, with the pK<sub>a</sub> of H257 increasing from 2.2 to 5.1 upon E259Q replacement. In contrast, the latter replacement has virtually no effect on the protonation of the H223. Thus, we conclude that the interplay of the protonation in the H223/H257/E259 triad has evolved to prevent triggering the accidental refolding of the T-domain by a fluctuation in the protonation of the main trigger at neutral pH, before the incorporation of the toxin inside the endosome. Subsequent acidification of the endosome overcomes the safety latch and triggers conformational switching via repulsion of H223<sup>+</sup> and H257<sup>+</sup>. This protonation/conformation relationship corroborates experimental findings and offers a detailed stepwise molecular description of the transition mechanism, which can be instrumental in optimizing the potential applications of the T-domain for targeted delivery of therapies to tumors and other diseased acidic tissues.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"4266-4273"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.08.023","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Protonation of key residues in the diphtheria toxin translocation (T)-domain triggered by endosomal acidification is critical for inducing a series of conformational transitions critical for the cellular entry of the toxin. Previous experiments revealed the importance of histidine residues in modulating pH-dependent transitions. They suggested the presence of a "safety latch" preventing premature refolding of the T-domain by a yet poorly understood mechanism. Here, we used constant-pH molecular dynamics simulations to systematically investigate the protonation sequence in the wild-type T-domain and the following mutants: H223Q, H257Q, E259Q, and H223Q/H257Q. Comparison of these computational results with previous experimental data on T-domain stability and activity with the H-to-Q replacements confirms the role of H223 (pKa = 6.5) in delaying the protonation of the main trigger, H257 (pKa = 2.2 in the WT and pKa = 4.9 in H223Q). Our calculations also reveal a very low pKa for a neighboring acidic residue E259, which does not get protonated even during simulations at pH 3. This residue also contributes to the formation of the safety latch, with the pKa of H257 increasing from 2.2 to 5.1 upon E259Q replacement. In contrast, the latter replacement has virtually no effect on the protonation of the H223. Thus, we conclude that the interplay of the protonation in the H223/H257/E259 triad has evolved to prevent triggering the accidental refolding of the T-domain by a fluctuation in the protonation of the main trigger at neutral pH, before the incorporation of the toxin inside the endosome. Subsequent acidification of the endosome overcomes the safety latch and triggers conformational switching via repulsion of H223+ and H257+. This protonation/conformation relationship corroborates experimental findings and offers a detailed stepwise molecular description of the transition mechanism, which can be instrumental in optimizing the potential applications of the T-domain for targeted delivery of therapies to tumors and other diseased acidic tissues.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
白喉毒素转运结构域中质子化触发的构象转换的恒pH MD 模拟。
内体酸化引发的白喉毒素转位(T-)结构域中关键残基的质子化对诱导一系列构象转变至关重要,而这些转变对毒素进入细胞至关重要。以前的实验揭示了组氨酸残基在调节 pH 依赖性转换中的重要性。这些实验表明,存在一个 "安全锁",通过一种尚不十分清楚的机制防止 T-结构域过早重折叠。在这里,我们使用恒定 pH 分子动力学模拟系统研究了野生型 T-结构域和以下突变体的质子化序列:H223Q、H257Q、E259Q 和 H223Q/H257Q。将这些计算结果与之前关于 T-结构域稳定性和活性的实验数据进行比较,证实了 H223(pKa = 6.5)在延迟主要触发因子 H257(WT 中 pKa = 2.2,H223Q 中 pKa = 4.9)的质子化过程中的作用。我们的计算还显示,邻近的一个酸性残基 E259 的 pKaf 值很低,即使在 pH 值为 3 的条件下进行模拟时也不会发生质子化。相比之下,后者对 H223 的质子化几乎没有影响。因此,我们得出结论,H223/H257/E259 三元组中质子的相互作用是为了防止在毒素进入内质体之前的中性 pH 值下,主要触发因子质子的波动引发 T-结构域的意外重折叠。随后内质体的酸化克服了安全锁,并通过 H223+ 和 H257+ 的排斥作用触发构象转换。这种质子化/构象关系证实了实验结果,并对转变机制提供了详细的分步分子描述,有助于优化 T-domain在肿瘤和其他病变酸性组织靶向递送疗法中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Migrasome formation is initiated preferentially in tubular junctions by membrane tension. Hypo-osmotic stress shifts transcription of circadian genes. Lattice Light-Sheet Microscopy Allows for Super-Resolution Imaging of Receptors in Leaf Tissue. Amyloid beta Aβ1-40 activates Piezo1 channels in brain capillary endothelial cells. Active Matter in the Nucleus: Chromatin Remodeling Drives Nuclear Force Dissipation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1