Nektarios Kostopoulos, Francesca Costabile, Elisavet Krimitza, Silvia Beghi, Denisa Goia, Renzo Perales-Linares, George Thyfronitis, Michael J LaRiviere, Elise A Chong, Stephen J Schuster, Amit Maity, Constantinos Koumenis, John P Plastaras, Andrea Facciabene
{"title":"Local Radiation Enhances Systemic CAR T Cell Efficacy by Augmenting Antigen Cross-Presentation and T-cell Infiltration.","authors":"Nektarios Kostopoulos, Francesca Costabile, Elisavet Krimitza, Silvia Beghi, Denisa Goia, Renzo Perales-Linares, George Thyfronitis, Michael J LaRiviere, Elise A Chong, Stephen J Schuster, Amit Maity, Constantinos Koumenis, John P Plastaras, Andrea Facciabene","doi":"10.1182/bloodadvances.2024012599","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cell therapy targeting CD19 (CART-19) represents a significant advance in the treatment of patients with relapsed or refractory CD19-positive B-cell lymphomas. However, a significant portion of patients either relapse or fail to respond. Moreover, many patients have symptomatic disease, requiring bridging radiation therapy (RT) during the period of CAR-T cells manufacturing. To investigate the impact of 1-2 fractions of low-dose RT on CART-19 treatment response, we developed a mouse model using A20 lymphoma cells for CART-19 therapy. We found that low dose fractionated RT had a positive effect on generating abscopal systemic antitumor responses beyond the irradiated site. The combination of RT with CART-19 therapy resulted in additive effects on tumor growth in irradiated masses. Notably, a significant additional increase in antitumor effect was observed in non-irradiated tumors. Mechanistically, our results validate activation of the cGAS/STING pathway, tumor-associated antigen (TAA) cross-priming, and elicitation of epitope spreading. Collectively, our findings suggest that RT may serve as an optimal priming and bridging modality for CAR-T cell therapy overcoming treatment resistance and improving clinical outcomes in patients with CD19-positive hematologic malignancies.</p>","PeriodicalId":9228,"journal":{"name":"Blood advances","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/bloodadvances.2024012599","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chimeric antigen receptor (CAR) T cell therapy targeting CD19 (CART-19) represents a significant advance in the treatment of patients with relapsed or refractory CD19-positive B-cell lymphomas. However, a significant portion of patients either relapse or fail to respond. Moreover, many patients have symptomatic disease, requiring bridging radiation therapy (RT) during the period of CAR-T cells manufacturing. To investigate the impact of 1-2 fractions of low-dose RT on CART-19 treatment response, we developed a mouse model using A20 lymphoma cells for CART-19 therapy. We found that low dose fractionated RT had a positive effect on generating abscopal systemic antitumor responses beyond the irradiated site. The combination of RT with CART-19 therapy resulted in additive effects on tumor growth in irradiated masses. Notably, a significant additional increase in antitumor effect was observed in non-irradiated tumors. Mechanistically, our results validate activation of the cGAS/STING pathway, tumor-associated antigen (TAA) cross-priming, and elicitation of epitope spreading. Collectively, our findings suggest that RT may serve as an optimal priming and bridging modality for CAR-T cell therapy overcoming treatment resistance and improving clinical outcomes in patients with CD19-positive hematologic malignancies.
期刊介绍:
Blood Advances, a semimonthly medical journal published by the American Society of Hematology, marks the first addition to the Blood family in 70 years. This peer-reviewed, online-only, open-access journal was launched under the leadership of founding editor-in-chief Robert Negrin, MD, from Stanford University Medical Center in Stanford, CA, with its inaugural issue released on November 29, 2016.
Blood Advances serves as an international platform for original articles detailing basic laboratory, translational, and clinical investigations in hematology. The journal comprehensively covers all aspects of hematology, including disorders of leukocytes (both benign and malignant), erythrocytes, platelets, hemostatic mechanisms, vascular biology, immunology, and hematologic oncology. Each article undergoes a rigorous peer-review process, with selection based on the originality of the findings, the high quality of the work presented, and the clarity of the presentation.