hsa_circ_0000129 targets miR-383-5p/tropomyosin 3 axis to facilitate ovarian cancer progression.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biotechnology and applied biochemistry Pub Date : 2024-09-01 DOI:10.1002/bab.2643
Yuan Li, Can Liu
{"title":"hsa_circ_0000129 targets miR-383-5p/tropomyosin 3 axis to facilitate ovarian cancer progression.","authors":"Yuan Li, Can Liu","doi":"10.1002/bab.2643","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer is one of the most prevalent malignancies among women. CircRNAs play key roles in the progression of ovarian cancer. This study aimed to investigate the mechanism of action of hsa_circ_0000129 and its effects on ovarian cancer. Expression of hsa_circ_0000129, tropomyosin 3 (TPM3), and miR-383-5p in ovarian cancer cell lines and tissue specimens was detected using qRT-PCR or western blotting. Cell counting kit-8 (CCK-8), colony formation, and transwell assays were performed to assess viability, proliferation, and migration of ovarian cancer cells. A xenograft model was used to study tumorigenicity of ovarian cancer cells in vivo. Luciferase and RNA immunoprecipitation assays were performed to determine binding between miR-383-5p and hsa_circ_0000129 or TPM3. Upregulation of hsa_circ_0000129 and TPM3 and downregulation of miR-383-5p were observed in ovarian cancer. Low hsa_circ_0000129 and TPM3 expression repressed viability, migration, and proliferation of ovarian cancer cells. Inhibition of miR-383-5p had a contrary effect. Furthermore, knockdown of hsa_circ_0000129 restricted the tumorigenicity of ovarian cancer cells. Mechanistically, hsa_circ_0000129 has a sponging effect on miR-383-5p, which targets TPM3. Hsa_circ_0000129 stimulated development of the malignant ovarian cancer phenotype by sponging miR-383-5p and releasing TPM3.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2643","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ovarian cancer is one of the most prevalent malignancies among women. CircRNAs play key roles in the progression of ovarian cancer. This study aimed to investigate the mechanism of action of hsa_circ_0000129 and its effects on ovarian cancer. Expression of hsa_circ_0000129, tropomyosin 3 (TPM3), and miR-383-5p in ovarian cancer cell lines and tissue specimens was detected using qRT-PCR or western blotting. Cell counting kit-8 (CCK-8), colony formation, and transwell assays were performed to assess viability, proliferation, and migration of ovarian cancer cells. A xenograft model was used to study tumorigenicity of ovarian cancer cells in vivo. Luciferase and RNA immunoprecipitation assays were performed to determine binding between miR-383-5p and hsa_circ_0000129 or TPM3. Upregulation of hsa_circ_0000129 and TPM3 and downregulation of miR-383-5p were observed in ovarian cancer. Low hsa_circ_0000129 and TPM3 expression repressed viability, migration, and proliferation of ovarian cancer cells. Inhibition of miR-383-5p had a contrary effect. Furthermore, knockdown of hsa_circ_0000129 restricted the tumorigenicity of ovarian cancer cells. Mechanistically, hsa_circ_0000129 has a sponging effect on miR-383-5p, which targets TPM3. Hsa_circ_0000129 stimulated development of the malignant ovarian cancer phenotype by sponging miR-383-5p and releasing TPM3.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
hsa_circ_0000129 以 miR-383-5p/tropomyosin 3 轴为靶点,促进卵巢癌的进展。
卵巢癌是女性最常见的恶性肿瘤之一。CircRNA 在卵巢癌的进展过程中起着关键作用。本研究旨在探讨 hsa_circ_0000129 的作用机制及其对卵巢癌的影响。采用 qRT-PCR 或 Western 印迹法检测 hsa_circ_0000129、肌钙蛋白 3 (TPM3) 和 miR-383-5p 在卵巢癌细胞系和组织标本中的表达。通过细胞计数试剂盒-8(CCK-8)、集落形成和透孔试验来评估卵巢癌细胞的活力、增殖和迁移。异种移植模型用于研究卵巢癌细胞在体内的致瘤性。进行了荧光素酶和 RNA 免疫沉淀试验,以确定 miR-383-5p 与 hsa_circ_0000129 或 TPM3 之间的结合。在卵巢癌中观察到了 hsa_circ_0000129 和 TPM3 的上调以及 miR-383-5p 的下调。hsa_circ_0000129 和 TPM3 的低表达抑制了卵巢癌细胞的活力、迁移和增殖。抑制 miR-383-5p 则有相反的效果。此外,敲除 hsa_circ_0000129 限制了卵巢癌细胞的致瘤性。从机理上讲,hsa_circ_0000129对靶向TPM3的miR-383-5p具有海绵效应。Hsa_circ_0000129通过海绵化miR-383-5p和释放TPM3来刺激恶性卵巢癌表型的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
期刊最新文献
Chromofungin mitigates free fatty acids-induced endothelial inflammation via inhibition of NOD-like receptor thermal protein domain-associated protein 3 mediated by adenosine 5'-monophosphate-activated protein kinase. Design of casein-based nanocarriers for targeted delivery of daunorubicin to leukemia cells. Elucidating the protective mechanism of ganoderic acid DM on breast cancer based on network pharmacology and in vitro experimental validation. Identification of dilated cardiomyopathy-linked key genes by bioinformatics methods and evaluating the impact of tannic acid and monosodium glutamate in rats. Propolis ameliorates renal, liver, and pancreatic lesions in Wistar rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1