Marinela Couselo-Seijas, Xocas Vázquez-Abuín, María Gómez-Lázaro, Laetitia Pereira, Ana M Gómez, Ricardo Caballero, Eva Delpón, Susana Bravo, José Ramón González-Juanatey, Sonia Eiras
{"title":"FABP4 Enhances Lipidic and Fibrotic Cardiac Structural and Ca<sup>2+</sup> Dynamic Changes.","authors":"Marinela Couselo-Seijas, Xocas Vázquez-Abuín, María Gómez-Lázaro, Laetitia Pereira, Ana M Gómez, Ricardo Caballero, Eva Delpón, Susana Bravo, José Ramón González-Juanatey, Sonia Eiras","doi":"10.1161/CIRCEP.123.012683","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adipocyte FABP4 (fatty acid-binding protein 4) is augmented in the epicardial stroma of patients with long-standing persistent atrial fibrillation. Because this molecule is released mainly by adipocytes, our objective was to study its role in atrial cardiomyopathy, focusing our attention on fibrosis, metabolism, and electrophysiological changes. These results might clarify the role of adiposity as a mediator of atrial cardiomyopathy.</p><p><strong>Methods: </strong>We used several preclinical cellular models, epicardial and subcutaneous stroma primary cell cultures from patients undergoing open heart surgery, human atrial fibroblasts, atrial cardiomyocytes derived from human induced pluripotent stem cells and isolated from adult mice, and Nav1.5 transfected Chinese hamster ovary cells. Fibrosis, glucose, mitochondrial and adipogenesis activity, gene expression, and proteomics were determined by wound healing, enzymatic, colorimetric, fluorescence assays, real-time quantitative polymerase chain reaction, and TripleTOF proteomics. Molecular changes were analyzed by Raman confocal microspectroscopy, calcium dynamics by confocal microscopy, and ion currents by patch clamp. Epicardial, subcutaneous, and atrial fibroblasts and cardiomyocytes were incubated with FABP4 at 100 ng/mL.</p><p><strong>Results: </strong>Our results showed that FABP4 induced fibrosis, glucose metabolism, and lipid accumulation on epicardial and subcutaneous stroma cells and atrial fibroblasts. Besides, it modified lipid content and calcium dynamics in atrial cardiomyocytes without effects on I<sub>Na</sub>.</p><p><strong>Conclusions: </strong>FABP4 exerts fibrotic and metabolic changes on epicardial stroma and modifies lipid content and calcium dynamic on atrial cardiomyocytes. These results suggest its possible role as an atrial cardiomyopathy mediator.</p>","PeriodicalId":10319,"journal":{"name":"Circulation. Arrhythmia and electrophysiology","volume":" ","pages":"e012683"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation. Arrhythmia and electrophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCEP.123.012683","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Adipocyte FABP4 (fatty acid-binding protein 4) is augmented in the epicardial stroma of patients with long-standing persistent atrial fibrillation. Because this molecule is released mainly by adipocytes, our objective was to study its role in atrial cardiomyopathy, focusing our attention on fibrosis, metabolism, and electrophysiological changes. These results might clarify the role of adiposity as a mediator of atrial cardiomyopathy.
Methods: We used several preclinical cellular models, epicardial and subcutaneous stroma primary cell cultures from patients undergoing open heart surgery, human atrial fibroblasts, atrial cardiomyocytes derived from human induced pluripotent stem cells and isolated from adult mice, and Nav1.5 transfected Chinese hamster ovary cells. Fibrosis, glucose, mitochondrial and adipogenesis activity, gene expression, and proteomics were determined by wound healing, enzymatic, colorimetric, fluorescence assays, real-time quantitative polymerase chain reaction, and TripleTOF proteomics. Molecular changes were analyzed by Raman confocal microspectroscopy, calcium dynamics by confocal microscopy, and ion currents by patch clamp. Epicardial, subcutaneous, and atrial fibroblasts and cardiomyocytes were incubated with FABP4 at 100 ng/mL.
Results: Our results showed that FABP4 induced fibrosis, glucose metabolism, and lipid accumulation on epicardial and subcutaneous stroma cells and atrial fibroblasts. Besides, it modified lipid content and calcium dynamics in atrial cardiomyocytes without effects on INa.
Conclusions: FABP4 exerts fibrotic and metabolic changes on epicardial stroma and modifies lipid content and calcium dynamic on atrial cardiomyocytes. These results suggest its possible role as an atrial cardiomyopathy mediator.
期刊介绍:
Circulation: Arrhythmia and Electrophysiology is a journal dedicated to the study and application of clinical cardiac electrophysiology. It covers a wide range of topics including the diagnosis and treatment of cardiac arrhythmias, as well as research in this field. The journal accepts various types of studies, including observational research, clinical trials, epidemiological studies, and advancements in translational research.