{"title":"An evaluation of exagamglogene autotemcel for the treatment of sickle cell disease and transfusion-dependent beta-thalassaemia.","authors":"Rupert Handgretinger, Markus Mezger","doi":"10.1080/14712598.2024.2399134","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Sickle cell disease is the most common hereditary hemoglobinopathy followed by beta-thalassemia. Until recently, allogeneic stem cell transplantation was the only curative approach. Based on the Crispr-Cas9-technology enabling targeting specific genes of interest, fetal hemoglobin which is normally shut-off after birth can be switched on and sufficient levels can alleviate symptoms in sickle cell disease and avoid transfusions in beta-thalassemia. Two first-in-human clinical studies in sickle cell disease and beta-thalassemia aiming to increase the level of fetal hemoglobin by using Crispr-Cas9 to modify autologous hematopoietic stem cells in patients aged 12-35 years have proved safety and efficacy and have shown promising clinical outcomes.</p><p><strong>Areas covered: </strong>The paper summarizes the outcome of the results of the two recently published clinical studies and compares them with the other available curative approaches.</p><p><strong>Expert opinion: </strong>Based on the currently available safety and efficacy data of the two published clinical results on gene therapy with Crispr-Cas9 modified autologous stem cells (exagamglogene autotemcel), it can be anticipated that this approach will add significantly to the therapeutic options for patients with sickle cell disease and beta-thalassemia and can be considered for all patients above 12 years of age independent of a suitable allogeneic stem cell donor.</p>","PeriodicalId":12084,"journal":{"name":"Expert Opinion on Biological Therapy","volume":" ","pages":"883-888"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Biological Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14712598.2024.2399134","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Sickle cell disease is the most common hereditary hemoglobinopathy followed by beta-thalassemia. Until recently, allogeneic stem cell transplantation was the only curative approach. Based on the Crispr-Cas9-technology enabling targeting specific genes of interest, fetal hemoglobin which is normally shut-off after birth can be switched on and sufficient levels can alleviate symptoms in sickle cell disease and avoid transfusions in beta-thalassemia. Two first-in-human clinical studies in sickle cell disease and beta-thalassemia aiming to increase the level of fetal hemoglobin by using Crispr-Cas9 to modify autologous hematopoietic stem cells in patients aged 12-35 years have proved safety and efficacy and have shown promising clinical outcomes.
Areas covered: The paper summarizes the outcome of the results of the two recently published clinical studies and compares them with the other available curative approaches.
Expert opinion: Based on the currently available safety and efficacy data of the two published clinical results on gene therapy with Crispr-Cas9 modified autologous stem cells (exagamglogene autotemcel), it can be anticipated that this approach will add significantly to the therapeutic options for patients with sickle cell disease and beta-thalassemia and can be considered for all patients above 12 years of age independent of a suitable allogeneic stem cell donor.
期刊介绍:
Expert Opinion on Biological Therapy (1471-2598; 1744-7682) is a MEDLINE-indexed, international journal publishing peer-reviewed research across all aspects of biological therapy.
Each article is structured to incorporate the author’s own expert opinion on the impact of the topic on research and clinical practice and the scope for future development.
The audience consists of scientists and managers in the healthcare and biopharmaceutical industries and others closely involved in the development and application of biological therapies for the treatment of human disease.
The journal welcomes:
Reviews covering therapeutic antibodies and vaccines, peptides and proteins, gene therapies and gene transfer technologies, cell-based therapies and regenerative medicine
Drug evaluations reviewing the clinical data on a particular biological agent
Original research papers reporting the results of clinical investigations on biological agents and biotherapeutic-based studies with a strong link to clinical practice
Comprehensive coverage in each review is complemented by the unique Expert Collection format and includes the following sections:
Expert Opinion – a personal view of the data presented in the article, a discussion on the developments that are likely to be important in the future, and the avenues of research likely to become exciting as further studies yield more detailed results;
Article Highlights – an executive summary of the author’s most critical points.