Directed differentiation of human embryonic stem cells into conjunctival epithelial cells

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Experimental cell research Pub Date : 2024-08-30 DOI:10.1016/j.yexcr.2024.114227
Xiangyue Hu , Chunxiao Dong , Dulei Zou , Chao Wei , Yani Wang , Zongren Li , Haoyun Duan , Zongyi Li
{"title":"Directed differentiation of human embryonic stem cells into conjunctival epithelial cells","authors":"Xiangyue Hu ,&nbsp;Chunxiao Dong ,&nbsp;Dulei Zou ,&nbsp;Chao Wei ,&nbsp;Yani Wang ,&nbsp;Zongren Li ,&nbsp;Haoyun Duan ,&nbsp;Zongyi Li","doi":"10.1016/j.yexcr.2024.114227","DOIUrl":null,"url":null,"abstract":"<div><p>Severe conjunctival damage can lead to extensive ocular cicatrisation, fornix shortening, and even ocular surface failure, resulting in significant vision impairment. Conjunctival reconstruction is the primary therapeutic strategy for these clinical conjunctival diseases. However, there have been limited studies on induced differentiation of conjunctival epithelial cells derived from stem cells. In this study, we established a chemical defined differentiation protocol from human embryonic stem cells (hESCs) into conjunctival epithelial cells. hES cell line H1 was used for differentiation, and RT-qPCR, immunofluorescence staining, Periodic-acid-Schiff staining (PAS), and transcriptome analysis were employed to identify the differentiated cells. Here, to imitate the development of the vertebrate conjunctiva, hESCs were induced using a three-step process involving first chetomin was used to induce ocular surface ectoderm, then nicotinamide was used to induce ocular surface epithelial progenitor cells, and finally epidermal growth factor, keratinocyte growth factor and other factors were used to differentiate mature conjunctival epithelial cells. hESC-derived conjunctival epithelial cells expressed mature conjunctival epithelial lineage markers (including PAX6, P63, K13). The presence of goblet cells was confirmed by positive PAS. Transcriptome analysis revealed that hESC-derived conjunctival epithelial cells possessed a more naïve phenotype, and exhibited greater proliferation capacity compared to mature human conjunctival epithelial cells, suggesting their potential as alternative seed cells for conjunctival reconstruction.</p></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"442 2","pages":"Article 114227"},"PeriodicalIF":3.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482724003185","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Severe conjunctival damage can lead to extensive ocular cicatrisation, fornix shortening, and even ocular surface failure, resulting in significant vision impairment. Conjunctival reconstruction is the primary therapeutic strategy for these clinical conjunctival diseases. However, there have been limited studies on induced differentiation of conjunctival epithelial cells derived from stem cells. In this study, we established a chemical defined differentiation protocol from human embryonic stem cells (hESCs) into conjunctival epithelial cells. hES cell line H1 was used for differentiation, and RT-qPCR, immunofluorescence staining, Periodic-acid-Schiff staining (PAS), and transcriptome analysis were employed to identify the differentiated cells. Here, to imitate the development of the vertebrate conjunctiva, hESCs were induced using a three-step process involving first chetomin was used to induce ocular surface ectoderm, then nicotinamide was used to induce ocular surface epithelial progenitor cells, and finally epidermal growth factor, keratinocyte growth factor and other factors were used to differentiate mature conjunctival epithelial cells. hESC-derived conjunctival epithelial cells expressed mature conjunctival epithelial lineage markers (including PAX6, P63, K13). The presence of goblet cells was confirmed by positive PAS. Transcriptome analysis revealed that hESC-derived conjunctival epithelial cells possessed a more naïve phenotype, and exhibited greater proliferation capacity compared to mature human conjunctival epithelial cells, suggesting their potential as alternative seed cells for conjunctival reconstruction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将人类胚胎干细胞定向分化为结膜上皮细胞。
严重的结膜损伤可导致大面积的眼球糜烂、穹窿缩短,甚至眼表功能衰竭,从而严重影响视力。结膜重建是这些临床结膜疾病的主要治疗策略。然而,有关干细胞诱导结膜上皮细胞分化的研究还很有限。在这项研究中,我们建立了一个从人类胚胎干细胞(hESCs)分化为结膜上皮细胞的化学定义分化方案,并使用RT-qPCR、免疫荧光染色、周期性酸-希夫染色(PAS)和转录组分析来鉴定分化的细胞。为了模仿脊椎动物结膜的发育过程,该研究采用三步法诱导hESCs,即首先用螯合素诱导眼表外胚层,然后用烟酰胺诱导眼表上皮祖细胞,最后用表皮生长因子、角质细胞生长因子和其他因子分化成熟的结膜上皮细胞。hESC衍生的结膜上皮样细胞表达了成熟的结膜上皮细胞系标记(包括PAX6、P63和K13)。PAS阳性证实了鹅口疮细胞的存在。转录组分析表明,与成熟的人类结膜上皮细胞相比,hESC衍生的结膜上皮样细胞具有更幼稚的表型,并表现出更强的增殖能力,这表明它们有潜力成为结膜重建的替代种子细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental cell research
Experimental cell research 医学-细胞生物学
CiteScore
7.20
自引率
0.00%
发文量
295
审稿时长
30 days
期刊介绍: Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.
期刊最新文献
Editorial Board The cystogenic effects of ouabain in autosomal dominant polycystic kidney disease require cell caveolae. Fbxo11 maintains mitochondrial function and prevents podocyte injury in adriamycin-induced nephropathy by mediating the ubiquitin degradation of Fosl2. MOTS-c relieves hepatocellular carcinoma resistance to TRAIL-induced apoptosis under hypoxic conditions by activating MEF2A. DDX18 influences chemotherapy sensitivity in colorectal cancer by regulating genomic stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1