An updated patent review of BRD4 degraders.

IF 5.4 2区 医学 Q1 CHEMISTRY, MEDICINAL Expert Opinion on Therapeutic Patents Pub Date : 2024-10-01 Epub Date: 2024-09-04 DOI:10.1080/13543776.2024.2400166
Zonghui Ma, Cun Zhang, Andrew A Bolinger, Jia Zhou
{"title":"An updated patent review of BRD4 degraders.","authors":"Zonghui Ma, Cun Zhang, Andrew A Bolinger, Jia Zhou","doi":"10.1080/13543776.2024.2400166","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Bromodomain-containing protein 4 (BRD4), an important epigenetic reader, is closely associated with the pathogenesis and development of many diseases, including various cancers, inflammation, and infectious diseases. Targeting BRD4 inhibition or protein elimination with small molecules represents a promising therapeutic strategy, particularly for cancer therapy.</p><p><strong>Areas covered: </strong>The recent advances of patented BRD4 degraders were summarized. The challenges, opportunities, and future directions for developing novel potent and selective BRD4 degraders are also discussed. The patents of BRD4 degraders were searched using the SciFinder and Cortellis Drug Discovery Intelligence database.</p><p><strong>Expert opinion: </strong>BRD4 degraders exhibit superior efficacy and selectivity to BRD4 inhibitors, given their unique mechanism of protein degradation instead of protein inhibition. Excitingly, RNK05047 is now in phase I/II clinical trials, indicating that selective BRD4 protein degradation may offer a viable therapeutic strategy, particularly for cancer. Targeting BRD4 with small-molecule degraders provides a promising approach with the potential to overcome therapeutic resistance for treating various BRD4-associated diseases.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427152/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2024.2400166","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Bromodomain-containing protein 4 (BRD4), an important epigenetic reader, is closely associated with the pathogenesis and development of many diseases, including various cancers, inflammation, and infectious diseases. Targeting BRD4 inhibition or protein elimination with small molecules represents a promising therapeutic strategy, particularly for cancer therapy.

Areas covered: The recent advances of patented BRD4 degraders were summarized. The challenges, opportunities, and future directions for developing novel potent and selective BRD4 degraders are also discussed. The patents of BRD4 degraders were searched using the SciFinder and Cortellis Drug Discovery Intelligence database.

Expert opinion: BRD4 degraders exhibit superior efficacy and selectivity to BRD4 inhibitors, given their unique mechanism of protein degradation instead of protein inhibition. Excitingly, RNK05047 is now in phase I/II clinical trials, indicating that selective BRD4 protein degradation may offer a viable therapeutic strategy, particularly for cancer. Targeting BRD4 with small-molecule degraders provides a promising approach with the potential to overcome therapeutic resistance for treating various BRD4-associated diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BRD4 降解剂的最新专利回顾。
导言:含溴结构域蛋白4(BRD4)是一种重要的表观遗传读写器,与许多疾病的发病和发展密切相关,包括各种癌症、炎症和传染性疾病。用小分子靶向抑制或消除 BRD4 蛋白是一种很有前景的治疗策略,尤其是在癌症治疗方面:总结了获得专利的 BRD4 降解剂的最新进展。还讨论了开发新型强效和选择性 BRD4 降解剂的挑战、机遇和未来方向。通过 SciFinder 和 Cortellis Drug Discovery Intelligence 数据库检索了 BRD4 降解剂的专利:BRD4降解剂具有独特的蛋白质降解机制,而非蛋白质抑制机制,因此其疗效和选择性优于BRD4抑制剂。令人振奋的是,RNK05047目前已进入I/II期临床试验阶段,这表明选择性BRD4蛋白降解可能提供一种可行的治疗策略,尤其是针对癌症。用小分子 BRD4 降解剂靶向 BRD4 是一种很有前景的方法,有可能克服治疗各种 BRD4 相关疾病的耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
1.50%
发文量
50
审稿时长
6-12 weeks
期刊介绍: Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature. The Editors welcome: Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area Patent Evaluations examining the aims and chemical and biological claims of individual patents Perspectives on issues relating to intellectual property The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.
期刊最新文献
A patent review of UNC-51-like kinase 1/2 inhibitors (2019-present). Urease inhibitors for the treatment of H. pylori. Menin-MLL protein-protein interaction inhibitors: a patent review (2021-present). Therapeutic compounds targeting interleukin-1 receptor-associated kinase 4 (IRAK4): an updated patent review (2019 to present). A patent review of lactate dehydrogenase inhibitors (2014-present).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1