Paul P Grabowski, Phat Dang, Jerry J Jenkins, Avinash Sreedasyam, Jenell Webber, Marshall Lamb, Qiong Zhang, Alvaro Sanz-Saez, Yucheng Feng, Victoria Bunting, Jayson Talag, Josh Clevenger, Peggy Ozias-Akins, C Corley Holbrook, Ye Chu, Jane Grimwood, Jeremy Schmutz, Charles Chen, John T Lovell
{"title":"Relics of interspecific hybridization retained in the genome of a drought-adapted peanut cultivar.","authors":"Paul P Grabowski, Phat Dang, Jerry J Jenkins, Avinash Sreedasyam, Jenell Webber, Marshall Lamb, Qiong Zhang, Alvaro Sanz-Saez, Yucheng Feng, Victoria Bunting, Jayson Talag, Josh Clevenger, Peggy Ozias-Akins, C Corley Holbrook, Ye Chu, Jane Grimwood, Jeremy Schmutz, Charles Chen, John T Lovell","doi":"10.1093/g3journal/jkae208","DOIUrl":null,"url":null,"abstract":"<p><p>Peanut (Arachis hypogaea L.) is a globally important oil and food crop frequently grown in arid, semi-arid, or dryland environments. Improving drought tolerance is a key goal for peanut crop improvement efforts. Here, we present the genome assembly and gene model annotation for \"Line8,\" a peanut genotype bred from drought-tolerant cultivars. Our assembly and annotation are the most contiguous and complete peanut genome resources currently available. The high contiguity of the Line8 assembly allowed us to explore structural variation both between peanut genotypes and subgenomes. We detect several large inversions between Line8 and other peanut genome assemblies, and there is a trend for the inversions between more genetically diverged genotypes to have higher gene content. We also relate patterns of subgenome exchange to structural variation between Line8 homeologous chromosomes. Unexpectedly, we discover that Line8 harbors an introgression from A.cardenasii, a diploid peanut relative and important donor of disease resistance alleles to peanut breeding populations. The fully resolved sequences of both haplotypes in this introgression provide the first in situ characterization of A.cardenasii candidate alleles that can be leveraged for future targeted improvement efforts. The completeness of our genome will support peanut biotechnology and broader research into the evolution of hybridization and polyploidy.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540320/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae208","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Peanut (Arachis hypogaea L.) is a globally important oil and food crop frequently grown in arid, semi-arid, or dryland environments. Improving drought tolerance is a key goal for peanut crop improvement efforts. Here, we present the genome assembly and gene model annotation for "Line8," a peanut genotype bred from drought-tolerant cultivars. Our assembly and annotation are the most contiguous and complete peanut genome resources currently available. The high contiguity of the Line8 assembly allowed us to explore structural variation both between peanut genotypes and subgenomes. We detect several large inversions between Line8 and other peanut genome assemblies, and there is a trend for the inversions between more genetically diverged genotypes to have higher gene content. We also relate patterns of subgenome exchange to structural variation between Line8 homeologous chromosomes. Unexpectedly, we discover that Line8 harbors an introgression from A.cardenasii, a diploid peanut relative and important donor of disease resistance alleles to peanut breeding populations. The fully resolved sequences of both haplotypes in this introgression provide the first in situ characterization of A.cardenasii candidate alleles that can be leveraged for future targeted improvement efforts. The completeness of our genome will support peanut biotechnology and broader research into the evolution of hybridization and polyploidy.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.