Xiaoyan Tian, Chuanqiang Zhang, Daojuan Wang, Xiaowei Li, Qiang Wang
{"title":"Ginseng polysaccharide promotes the apoptosis of colon cancer cells via activating the NLRP3 inflammasome.","authors":"Xiaoyan Tian, Chuanqiang Zhang, Daojuan Wang, Xiaowei Li, Qiang Wang","doi":"10.1080/08923973.2024.2398472","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ginseng polysaccharide (GPS) is an ingredient of ginseng with documented anti-tumor properties. However, its effect on colon cancer and the underlying molecular mechanisms have not been investigated clearly.</p><p><strong>Methods: </strong>Cell viability of HT29 and CT26 cells treated with different concentrations of GPS was assessed using the Cell Counting Kit-8 (CCK-8) assay. Western blot assay was used to detect the expression of apoptotic proteins, while the mRNA levels were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). Transwell migration assays were used to examine the migration and invasion of cells.</p><p><strong>Results: </strong>The results revealed that GPS effectively suppressed the proliferation of HT29 and CT26 cells. We demonstrated an upregulation of apoptotic proteins in GPS-treated cells, including Bax, cleaved Caspase-3, and p-p53. GPS treatment also increased the mRNA levels of cytochrome C and Bax. Furthermore, the results showed that GPS treatment concurrently promoted the activation of nucleotide-binding domain leucine-rich family pyrin-containing 3 (NLRP3) inflammasome. Transwell migration assays showed that GPS inhibited the migratory and invasive abilities of colon cancer cells. As expected, inhibition of NLRP3 expression using INF39 attenuated the inhibitory effect of GPS on migration and invasion. Upon NLRP3 inhibition, GPS-induced apoptosis was dramatically alleviated, accompanied by a reduction in the expression of apoptotic proteins.</p><p><strong>Conclusion: </strong>In conclusion, this research provides compelling evidence that the GPS-induced NLRP3 signaling pathway plays a pivotal role in apoptosis of colon cells, suggesting potential clinical implications for the therapeutic intervention of colon cancer. Thus, GPS might be a promising anti-tumor drug for the treatment of colorectal cancer.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":" ","pages":"715-726"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2024.2398472","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ginseng polysaccharide (GPS) is an ingredient of ginseng with documented anti-tumor properties. However, its effect on colon cancer and the underlying molecular mechanisms have not been investigated clearly.
Methods: Cell viability of HT29 and CT26 cells treated with different concentrations of GPS was assessed using the Cell Counting Kit-8 (CCK-8) assay. Western blot assay was used to detect the expression of apoptotic proteins, while the mRNA levels were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). Transwell migration assays were used to examine the migration and invasion of cells.
Results: The results revealed that GPS effectively suppressed the proliferation of HT29 and CT26 cells. We demonstrated an upregulation of apoptotic proteins in GPS-treated cells, including Bax, cleaved Caspase-3, and p-p53. GPS treatment also increased the mRNA levels of cytochrome C and Bax. Furthermore, the results showed that GPS treatment concurrently promoted the activation of nucleotide-binding domain leucine-rich family pyrin-containing 3 (NLRP3) inflammasome. Transwell migration assays showed that GPS inhibited the migratory and invasive abilities of colon cancer cells. As expected, inhibition of NLRP3 expression using INF39 attenuated the inhibitory effect of GPS on migration and invasion. Upon NLRP3 inhibition, GPS-induced apoptosis was dramatically alleviated, accompanied by a reduction in the expression of apoptotic proteins.
Conclusion: In conclusion, this research provides compelling evidence that the GPS-induced NLRP3 signaling pathway plays a pivotal role in apoptosis of colon cells, suggesting potential clinical implications for the therapeutic intervention of colon cancer. Thus, GPS might be a promising anti-tumor drug for the treatment of colorectal cancer.
期刊介绍:
The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal.
The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome.
With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more.
Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).