miR‑155 promotes an inflammatory response in HaCaT cells via the IRF2BP2/KLF2/NF‑κB pathway in psoriasis.

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL International journal of molecular medicine Pub Date : 2024-11-01 Epub Date: 2024-09-02 DOI:10.3892/ijmm.2024.5415
Lu Chen, Chang Liu, Xuesong Xiang, Wenhong Qiu, Kaiwen Guo
{"title":"miR‑155 promotes an inflammatory response in HaCaT cells via the IRF2BP2/KLF2/NF‑κB pathway in psoriasis.","authors":"Lu Chen, Chang Liu, Xuesong Xiang, Wenhong Qiu, Kaiwen Guo","doi":"10.3892/ijmm.2024.5415","DOIUrl":null,"url":null,"abstract":"<p><p>Psoriasis is a chronic inflammatory skin condition with numerous causes, including genetic, immunological and infectious factors. The course of psoriasis is long and recurrence is common; pathogenesis is not completely understood. However, there is an association between advancement of psoriasis and aberrant microRNA (miR or miRNA)‑155 expression. Through bioinformatics, the present study aimed to analyze the differentially expressed genes and miRNAs in psoriasis and its biological mechanism and function psoriatic inflammation. First of all, differentially expressed genes (DEGs) and miRNAs (DEMs) in patients with psoriasis were identified using GEO2R interactive web application. A psoriasis inflammatory model was established using lipopolysaccharide (LPS)‑treated HaCaT keratinocytes, which were transfected with miR‑155 mimic or inhibitor. Cell Counting Kit‑8 was used for the assessment of cell viability and proliferation, and changes in the cell cycle were examined using flow cytometry. ELISA and reverse transcription‑quantitative PCR (RT‑qPCR) were used to detect the expression levels of the inflammatory factors IL‑1β and IL‑6. The dual‑luciferase reporter assay was used to verify the targeting association between miR‑155‑5p and IFN regulatory factor 2 binding protein 2 (IRF2BP2). To verify the targeting association of miR‑155 and the IRF2BP2/kruppel‑like factor 2 (KLF2)/NF‑κB signaling pathway, expression levels of IRF2BP2, KLF2 and p65 were identified by RT‑qPCR and western blotting. IRF2BP2 levels were also confirmed by immunofluorescence, in conjunction with bioinformatics database analysis. Overexpression of miR‑155 inhibited proliferation of HaCaT cells and increased the number of cells in S phase and decreasing number of cells in G1 and G2 phase. In the LPS‑induced inflammatory state, miR‑155 overexpression heightened the inflammatory response of HaCaT cells while inhibition of miR‑155 lessened it. Suppression of inflammatory cytokine expression by miR‑155‑5p inhibitor was reversed by knockdown of IRF2BP2. miR‑155 was shown to interact with IRF2BP2 to negatively regulate its expression, leading to decreased KLF2 expression and increased p65 expression and secretion of inflammatory factors, intensifying the inflammatory response of HaCaT cells. Therefore, miR‑155 may contribute to development of psoriasis by inducing tissue and cell damage by increasing the inflammatory response of HaCaT cells via the IRF2BP2/KLF2/NF‑κB pathway. In conclusion, the results of the present study offer novel perspectives on the role of miR‑155 in the onset and progression of psoriasis.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"54 5","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374146/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2024.5415","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Psoriasis is a chronic inflammatory skin condition with numerous causes, including genetic, immunological and infectious factors. The course of psoriasis is long and recurrence is common; pathogenesis is not completely understood. However, there is an association between advancement of psoriasis and aberrant microRNA (miR or miRNA)‑155 expression. Through bioinformatics, the present study aimed to analyze the differentially expressed genes and miRNAs in psoriasis and its biological mechanism and function psoriatic inflammation. First of all, differentially expressed genes (DEGs) and miRNAs (DEMs) in patients with psoriasis were identified using GEO2R interactive web application. A psoriasis inflammatory model was established using lipopolysaccharide (LPS)‑treated HaCaT keratinocytes, which were transfected with miR‑155 mimic or inhibitor. Cell Counting Kit‑8 was used for the assessment of cell viability and proliferation, and changes in the cell cycle were examined using flow cytometry. ELISA and reverse transcription‑quantitative PCR (RT‑qPCR) were used to detect the expression levels of the inflammatory factors IL‑1β and IL‑6. The dual‑luciferase reporter assay was used to verify the targeting association between miR‑155‑5p and IFN regulatory factor 2 binding protein 2 (IRF2BP2). To verify the targeting association of miR‑155 and the IRF2BP2/kruppel‑like factor 2 (KLF2)/NF‑κB signaling pathway, expression levels of IRF2BP2, KLF2 and p65 were identified by RT‑qPCR and western blotting. IRF2BP2 levels were also confirmed by immunofluorescence, in conjunction with bioinformatics database analysis. Overexpression of miR‑155 inhibited proliferation of HaCaT cells and increased the number of cells in S phase and decreasing number of cells in G1 and G2 phase. In the LPS‑induced inflammatory state, miR‑155 overexpression heightened the inflammatory response of HaCaT cells while inhibition of miR‑155 lessened it. Suppression of inflammatory cytokine expression by miR‑155‑5p inhibitor was reversed by knockdown of IRF2BP2. miR‑155 was shown to interact with IRF2BP2 to negatively regulate its expression, leading to decreased KLF2 expression and increased p65 expression and secretion of inflammatory factors, intensifying the inflammatory response of HaCaT cells. Therefore, miR‑155 may contribute to development of psoriasis by inducing tissue and cell damage by increasing the inflammatory response of HaCaT cells via the IRF2BP2/KLF2/NF‑κB pathway. In conclusion, the results of the present study offer novel perspectives on the role of miR‑155 in the onset and progression of psoriasis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miR-155 通过 IRF2BP2/KLF2/NF-κB 通路促进银屑病中 HaCaT 细胞的炎症反应。
银屑病是一种慢性炎症性皮肤病,病因众多,包括遗传、免疫和感染因素。银屑病病程长,复发率高,发病机理尚不完全清楚。然而,银屑病的进展与异常微RNA(miR或miRNA)-155表达之间存在关联。本研究旨在通过生物信息学分析银屑病中差异表达的基因和 miRNAs 及其生物学机制和功能。首先,利用 GEO2R 交互式网络应用程序确定了银屑病患者的差异表达基因(DEGs)和 miRNAs(DEMs)。利用经脂多糖(LPS)处理的 HaCaT 角质细胞建立了银屑病炎症模型,并转染了 miR-155 模拟物或抑制剂。细胞计数试剂盒-8 用于评估细胞活力和增殖,流式细胞术则用于检测细胞周期的变化。ELISA 和反转录定量 PCR(RT-qPCR)用于检测炎症因子 IL-1β 和 IL-6 的表达水平。双荧光素酶报告实验用于验证 miR-155-5p 与 IFN 调节因子 2 结合蛋白 2(IRF2BP2)之间的靶向关联。为了验证 miR-155 与 IRF2BP2/kruppel-like factor 2 (KLF2)/NF-κB 信号通路的靶向关联,研究人员通过 RT-qPCR 和 Western 印迹鉴定了 IRF2BP2、KLF2 和 p65 的表达水平。还通过免疫荧光以及生物信息学数据库分析确认了 IRF2BP2 的水平。过表达 miR-155 可抑制 HaCaT 细胞的增殖,增加 S 期细胞的数量,减少 G1 期和 G2 期细胞的数量。在 LPS 诱导的炎症状态下,过表达 miR-155 会增强 HaCaT 细胞的炎症反应,而抑制 miR-155 则会减轻炎症反应。研究表明,miR-155 与 IRF2BP2 相互作用,负向调节 IRF2BP2 的表达,导致 KLF2 表达减少,p65 表达和炎症因子分泌增加,从而加剧了 HaCaT 细胞的炎症反应。因此,miR-155 可能通过 IRF2BP2/KLF2/NF-κB 通路增加 HaCaT 细胞的炎症反应,从而诱导组织和细胞损伤,从而导致银屑病的发生。总之,本研究的结果为 miR-155 在银屑病发病和进展过程中的作用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
期刊最新文献
[Retracted] PLGA/poloxamer nanoparticles loaded with EPAS1 siRNA for the treatment of pancreatic cancer in vitro and in vivo. Adrenic acid: A promising biomarker and therapeutic target (Review). Role of DNA methylation transferase in urinary system diseases: From basic to clinical perspectives (Review). [Corrigendum] A regulation loop between Nrf1α and MRTF‑A controls migration and invasion in MDA‑MB‑231 breast cancer cells. Advances in predicting breast cancer driver mutations: Tools for precision oncology (Review).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1