Simon Arhar, Rupert Pfaller, Karin Athenstaedt, Thomas Lins, Gabriela Gogg-Fassolter, Thomas Züllig, Klaus Natter
{"title":"Retargeting of heterologous enzymes results in improved β-carotene synthesis in Saccharomyces cerevisiae.","authors":"Simon Arhar, Rupert Pfaller, Karin Athenstaedt, Thomas Lins, Gabriela Gogg-Fassolter, Thomas Züllig, Klaus Natter","doi":"10.1093/jambio/lxae224","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Carotenoids are a class of hydrophobic substances that are important as food and feed colorants and as antioxidants. The pathway for β-carotene synthesis has been expressed in various yeast species, albeit with rather low yields and titers. The inefficient conversion of phytoene to lycopene is often regarded as a bottleneck in the pathway. In this study, we aimed at the improvement of β-carotene production in Saccharomyces cerevisiae by specifically engineering the enzymatic reactions producing and converting phytoene.</p><p><strong>Methods and results: </strong>We show that phytoene is stored in intracellular lipid droplets, whereas the enzyme responsible for its conversion, phytoene dehydrogenase, CrtI, is located at the endoplasmic reticulum, like the bifunctional enzyme CrtYB that catalyses the reaction before and after CrtI. To improve the accessibility of phytoene for CrtI and to delay its storage in lipid droplets, we tested the relocation of CrtI and CrtYB to mitochondria. However, only the retargeting of CrtYB resulted in an improvement of the β-carotene content, whereas the mitochondrial variant of CrtI was not functional. Surprisingly, a cytosolic variant of this enzyme, which we obtained through the elimination of its carboxy-terminal membrane anchor, caused an increase in β-carotene accumulation. Overexpression of this CrtI variant in an optimized medium resulted in a strain with a β-carotene content of 79 mg g-1 cell dry weight, corresponding to a 76-fold improvement over the starting strain.</p><p><strong>Conclusions: </strong>The retargeting of heterologously expressed pathway enzymes improves β-carotene production in S. cerevisiae, implicating extensive inter-organellar transport phenomena of carotenoid precursors. In addition, strong overexpression of carotenoid biosynthetic enzymes and the optimization of cultivation conditions are required for high contents.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae224","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Carotenoids are a class of hydrophobic substances that are important as food and feed colorants and as antioxidants. The pathway for β-carotene synthesis has been expressed in various yeast species, albeit with rather low yields and titers. The inefficient conversion of phytoene to lycopene is often regarded as a bottleneck in the pathway. In this study, we aimed at the improvement of β-carotene production in Saccharomyces cerevisiae by specifically engineering the enzymatic reactions producing and converting phytoene.
Methods and results: We show that phytoene is stored in intracellular lipid droplets, whereas the enzyme responsible for its conversion, phytoene dehydrogenase, CrtI, is located at the endoplasmic reticulum, like the bifunctional enzyme CrtYB that catalyses the reaction before and after CrtI. To improve the accessibility of phytoene for CrtI and to delay its storage in lipid droplets, we tested the relocation of CrtI and CrtYB to mitochondria. However, only the retargeting of CrtYB resulted in an improvement of the β-carotene content, whereas the mitochondrial variant of CrtI was not functional. Surprisingly, a cytosolic variant of this enzyme, which we obtained through the elimination of its carboxy-terminal membrane anchor, caused an increase in β-carotene accumulation. Overexpression of this CrtI variant in an optimized medium resulted in a strain with a β-carotene content of 79 mg g-1 cell dry weight, corresponding to a 76-fold improvement over the starting strain.
Conclusions: The retargeting of heterologously expressed pathway enzymes improves β-carotene production in S. cerevisiae, implicating extensive inter-organellar transport phenomena of carotenoid precursors. In addition, strong overexpression of carotenoid biosynthetic enzymes and the optimization of cultivation conditions are required for high contents.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.