An extensible and unifying approach to retrospective clinical data modeling: the BrainTeaser Ontology.

IF 1.6 3区 工程技术 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Biomedical Semantics Pub Date : 2024-08-30 DOI:10.1186/s13326-024-00317-y
Guglielmo Faggioli, Laura Menotti, Stefano Marchesin, Adriano Chió, Arianna Dagliati, Mamede de Carvalho, Marta Gromicho, Umberto Manera, Eleonora Tavazzi, Giorgio Maria Di Nunzio, Gianmaria Silvello, Nicola Ferro
{"title":"An extensible and unifying approach to retrospective clinical data modeling: the BrainTeaser Ontology.","authors":"Guglielmo Faggioli, Laura Menotti, Stefano Marchesin, Adriano Chió, Arianna Dagliati, Mamede de Carvalho, Marta Gromicho, Umberto Manera, Eleonora Tavazzi, Giorgio Maria Di Nunzio, Gianmaria Silvello, Nicola Ferro","doi":"10.1186/s13326-024-00317-y","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic disease progression prediction models require large amounts of training data, which are seldom available, especially when it comes to rare diseases. A possible solution is to integrate data from different medical centres. Nevertheless, various centres often follow diverse data collection procedures and assign different semantics to collected data. Ontologies, used as schemas for interoperable knowledge bases, represent a state-of-the-art solution to homologate the semantics and foster data integration from various sources. This work presents the BrainTeaser Ontology (BTO), an ontology that models the clinical data associated with two brain-related rare diseases (ALS and MS) in a comprehensive and modular manner. BTO assists in organizing and standardizing the data collected during patient follow-up. It was created by harmonizing schemas currently used by multiple medical centers into a common ontology, following a bottom-up approach. As a result, BTO effectively addresses the practical data collection needs of various real-world situations and promotes data portability and interoperability. BTO captures various clinical occurrences, such as disease onset, symptoms, diagnostic and therapeutic procedures, and relapses, using an event-based approach. Developed in collaboration with medical partners and domain experts, BTO offers a holistic view of ALS and MS for supporting the representation of retrospective and prospective data. Furthermore, BTO adheres to Open Science and FAIR (Findable, Accessible, Interoperable, and Reusable) principles, making it a reliable framework for developing predictive tools to aid in medical decision-making and patient care. Although BTO is designed for ALS and MS, its modular structure makes it easily extendable to other brain-related diseases, showcasing its potential for broader applicability.Database URL  https://zenodo.org/records/7886998 .</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":"15 1","pages":"16"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-024-00317-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic disease progression prediction models require large amounts of training data, which are seldom available, especially when it comes to rare diseases. A possible solution is to integrate data from different medical centres. Nevertheless, various centres often follow diverse data collection procedures and assign different semantics to collected data. Ontologies, used as schemas for interoperable knowledge bases, represent a state-of-the-art solution to homologate the semantics and foster data integration from various sources. This work presents the BrainTeaser Ontology (BTO), an ontology that models the clinical data associated with two brain-related rare diseases (ALS and MS) in a comprehensive and modular manner. BTO assists in organizing and standardizing the data collected during patient follow-up. It was created by harmonizing schemas currently used by multiple medical centers into a common ontology, following a bottom-up approach. As a result, BTO effectively addresses the practical data collection needs of various real-world situations and promotes data portability and interoperability. BTO captures various clinical occurrences, such as disease onset, symptoms, diagnostic and therapeutic procedures, and relapses, using an event-based approach. Developed in collaboration with medical partners and domain experts, BTO offers a holistic view of ALS and MS for supporting the representation of retrospective and prospective data. Furthermore, BTO adheres to Open Science and FAIR (Findable, Accessible, Interoperable, and Reusable) principles, making it a reliable framework for developing predictive tools to aid in medical decision-making and patient care. Although BTO is designed for ALS and MS, its modular structure makes it easily extendable to other brain-related diseases, showcasing its potential for broader applicability.Database URL  https://zenodo.org/records/7886998 .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展和统一的回顾性临床数据建模方法:BrainTeaser 本体论。
自动疾病进展预测模型需要大量的训练数据,而这些数据很少能获得,尤其是在罕见疾病方面。一个可行的解决方案是整合来自不同医疗中心的数据。然而,不同的中心通常采用不同的数据收集程序,并为收集到的数据分配不同的语义。本体作为可互操作知识库的模式,代表了一种最先进的解决方案,可实现语义同源并促进来自不同来源的数据整合。这项工作提出了脑激酶本体(BTO),本体以全面和模块化的方式对与两种脑相关罕见疾病(ALS 和 MS)相关的临床数据进行建模。BTO 有助于对患者随访过程中收集的数据进行组织和标准化。它是通过自下而上的方法,将多个医疗中心目前使用的模式统一为一个通用本体而创建的。因此,BTO 能有效满足各种实际情况下的数据收集需求,并促进数据的可移植性和互操作性。BTO 采用基于事件的方法捕获各种临床事件,如疾病发病、症状、诊断和治疗过程以及复发。BTO 是与医疗合作伙伴和领域专家合作开发的,它提供了 ALS 和 MS 的整体视图,支持回顾性和前瞻性数据的表示。此外,BTO 遵循开放科学和 FAIR(可查找、可访问、可互操作和可重用)原则,是开发预测工具的可靠框架,有助于医疗决策和患者护理。虽然 BTO 是针对 ALS 和 MS 而设计的,但其模块化结构使其很容易扩展到其他脑相关疾病,从而展示了其更广泛的应用潜力。数据库网址 https://zenodo.org/records/7886998 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomedical Semantics
Journal of Biomedical Semantics MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
4.20
自引率
5.30%
发文量
28
审稿时长
30 weeks
期刊介绍: Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas: Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability. Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.
期刊最新文献
Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI). MeSH2Matrix: combining MeSH keywords and machine learning for biomedical relation classification based on PubMed. Annotation of epilepsy clinic letters for natural language processing An extensible and unifying approach to retrospective clinical data modeling: the BrainTeaser Ontology. Concretizing plan specifications as realizables within the OBO foundry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1