{"title":"Dependency of crossover point on absorption changes in bilayer diffusion reflection measurements.","authors":"Channa Shapira, Yuval Yedvav, Hamootal Duadi, Haim Taitelbaum, Dror Fixler","doi":"10.1117/1.JBO.29.8.087001","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>A better understanding of diffusion reflection (DR) behavior may allow it to be used for more noninvasive applications, including the development of <i>in vivo</i> non-damaging techniques, especially for medical topical diagnosis and treatments.</p><p><strong>Aim: </strong>For a bilayer opaque substance where the attenuation of the upper layer is larger than the attenuation of the lower layer, the DR crossover point ( <math> <mrow><msub><mi>C</mi> <mi>p</mi></msub> </mrow> </math> ) is location where the photons coming from the bottom layer start affecting the DR. We aim to study the dependency of the <math> <mrow><msub><mi>C</mi> <mi>p</mi></msub> </mrow> </math> on absorption changes in different layers for constant scattering and top layer thickness.</p><p><strong>Approach: </strong>Monolayer and bilayer optical tissue-like phantoms were prepared and measured using a DR system. The results were compared with Monte Carlo simulations.</p><p><strong>Results: </strong>There is an agreement between the experiments and the simulations. <math> <mrow><msub><mi>C</mi> <mi>p</mi></msub> </mrow> </math> correlates with the square root of the absorption coefficient ratio of the lower layer to the top layer.</p><p><strong>Conclusion: </strong>The experimental findings support and validate the theoretical prediction describing the dependency of the <math> <mrow><msub><mi>C</mi> <mi>p</mi></msub> </mrow> </math> on the square root of the ratio of the layers' absorption coefficients. In addition, a secondary breaking point is suggested to be observed experimentally at the entrance to the noise area.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 8","pages":"087001"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350519/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.8.087001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: A better understanding of diffusion reflection (DR) behavior may allow it to be used for more noninvasive applications, including the development of in vivo non-damaging techniques, especially for medical topical diagnosis and treatments.
Aim: For a bilayer opaque substance where the attenuation of the upper layer is larger than the attenuation of the lower layer, the DR crossover point ( ) is location where the photons coming from the bottom layer start affecting the DR. We aim to study the dependency of the on absorption changes in different layers for constant scattering and top layer thickness.
Approach: Monolayer and bilayer optical tissue-like phantoms were prepared and measured using a DR system. The results were compared with Monte Carlo simulations.
Results: There is an agreement between the experiments and the simulations. correlates with the square root of the absorption coefficient ratio of the lower layer to the top layer.
Conclusion: The experimental findings support and validate the theoretical prediction describing the dependency of the on the square root of the ratio of the layers' absorption coefficients. In addition, a secondary breaking point is suggested to be observed experimentally at the entrance to the noise area.
意义:目的:对于上层衰减大于下层衰减的双层不透明物质,DR交叉点(C p)是指来自底层的光子开始影响DR的位置。我们旨在研究在散射和顶层厚度不变的情况下,C p 与不同层吸收变化的关系:方法:使用 DR 系统制备并测量单层和双层类光学组织模型。方法:使用 DR 系统制备并测量单层和双层光学组织模型,并将结果与蒙特卡罗模拟进行比较:结果:实验与模拟结果一致。 C p 与下层与上层的吸收系数比的平方根相关:实验结果支持并验证了 C p 与各层吸收系数比平方根相关性的理论预测。此外,实验还发现在噪声区域的入口处存在一个次级断裂点。
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.