Glycine Receptor Beta Subunit (GlyR-β) Promotes Potential Angiogenesis and Neurological Regeneration during Early-Stage Recovery after Cerebral Ischemia Stroke/Reperfusion in Mice.
Yuan Xu, Yushi Yang, Jie Yang, Junshuan Cui, Jian Yan, Jiannan Jiang, Zhangwei Yan, Hua Yang
{"title":"Glycine Receptor Beta Subunit (GlyR-β) Promotes Potential Angiogenesis and Neurological Regeneration during Early-Stage Recovery after Cerebral Ischemia Stroke/Reperfusion in Mice.","authors":"Yuan Xu, Yushi Yang, Jie Yang, Junshuan Cui, Jian Yan, Jiannan Jiang, Zhangwei Yan, Hua Yang","doi":"10.31083/j.jin2308145","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ischemic stroke is mainly caused by cerebral artery thrombosis. This study investigated the role of glycine receptor beta subunit (GlyR-β) in the recovery from cerebral ischemia stroke/reperfusion.</p><p><strong>Methods: </strong>The oxygen glucose deprivation and recovery (OGD/R) bEnd3 cell model and the middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model were used in this study.</p><p><strong>Results: </strong>Expression of both the <i>GlyR-β</i> gene and vascular endothelial growth factor (<i>Vegf</i>), cell proliferation, and tube formation ability was decreased in bEnd3 cells after OGD/R, and was reversed by overexpression of GlyR-β. Neurological function, asindicated by Zea Longa scores, area of cerebral ischemia, and pathological changes were increased in mice after MCAO/R, and were ameliorated by overexpression of the glycine receptor beta (<i>Glrb</i>) gene at 24 h and 7 d after MCAO/R. Expression of GlyR-β and Gap-43 was decreased, and the expression of CD34, Vegf, and Bdnf, and cell growth as determined by a bromodeoxyuridine (BrdU) assay, increased in the affected brain tissue of MCAO/R mice in a time-dependent manner. GlyR-β overexpression resulted in enhanced expression of CD34, Vegf, Growth association protein 43 (Gap-43), and brain-derived neurotrophic factor (Bdnf) and cell growth in affected brain tissue of MCAO/R mice in a time-dependent manner.</p><p><strong>Conclusions: </strong>GlyR-β promoted potential angiogenesis and neurological regeneration in affected brain tissue, thus promoting recovery from cerebral ischemia stroke/reperfusion.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 8","pages":"145"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jin2308145","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ischemic stroke is mainly caused by cerebral artery thrombosis. This study investigated the role of glycine receptor beta subunit (GlyR-β) in the recovery from cerebral ischemia stroke/reperfusion.
Methods: The oxygen glucose deprivation and recovery (OGD/R) bEnd3 cell model and the middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model were used in this study.
Results: Expression of both the GlyR-β gene and vascular endothelial growth factor (Vegf), cell proliferation, and tube formation ability was decreased in bEnd3 cells after OGD/R, and was reversed by overexpression of GlyR-β. Neurological function, asindicated by Zea Longa scores, area of cerebral ischemia, and pathological changes were increased in mice after MCAO/R, and were ameliorated by overexpression of the glycine receptor beta (Glrb) gene at 24 h and 7 d after MCAO/R. Expression of GlyR-β and Gap-43 was decreased, and the expression of CD34, Vegf, and Bdnf, and cell growth as determined by a bromodeoxyuridine (BrdU) assay, increased in the affected brain tissue of MCAO/R mice in a time-dependent manner. GlyR-β overexpression resulted in enhanced expression of CD34, Vegf, Growth association protein 43 (Gap-43), and brain-derived neurotrophic factor (Bdnf) and cell growth in affected brain tissue of MCAO/R mice in a time-dependent manner.
Conclusions: GlyR-β promoted potential angiogenesis and neurological regeneration in affected brain tissue, thus promoting recovery from cerebral ischemia stroke/reperfusion.
期刊介绍:
JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.