Objective Sleep Function is Associated with Hippocampal Subfield Volumes in Community-Dwelling Adults.

IF 2.5 4区 医学 Q3 NEUROSCIENCES Journal of integrative neuroscience Pub Date : 2024-08-21 DOI:10.31083/j.jin2308159
Niki Mourtzi, Angeliki Tsapanou, Renia Morfakidou, Georgia Angelopoulou, Vasilios Constantinides, Eva Ntanasi, Eirini Mamalaki, Mary Yannakoulia, Efstratios Karavasilis, Foteini Christidi, Georgios Velonakis, Nikolaos Scarmeas
{"title":"Objective Sleep Function is Associated with Hippocampal Subfield Volumes in Community-Dwelling Adults.","authors":"Niki Mourtzi, Angeliki Tsapanou, Renia Morfakidou, Georgia Angelopoulou, Vasilios Constantinides, Eva Ntanasi, Eirini Mamalaki, Mary Yannakoulia, Efstratios Karavasilis, Foteini Christidi, Georgios Velonakis, Nikolaos Scarmeas","doi":"10.31083/j.jin2308159","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sleep patterns often shift as people age, a phenomenon frequently associated with the onset of neurodegenerative conditions. Additionally, distinct alterations occur in brain structure as individuals grow older, particularly within the hippocampus, a region known for its role in cognition and sleep regulation. Yet, how exactly do changes in sleep relate to specific subfields within the hippocampus is still unclear.</p><p><strong>Methods: </strong>We conducted a study involving non-demented healthy adults from the Aiginition Longitudinal Biomarker Investigation Of Neurodegeneration (ALBION) cohort. Participants underwent objective sleep measurements using wrist Actiwatch and WatchPAT devices. Further, all participants underwent the same Magnetic Resonance Imaging (MRI) protocol, including a 3D high resolution T1-weighted sequence, on the same 3.0 Tesla MRI scanner using an eight-channel head coil. The study aimed to examine the relationship between objectively measured sleep metrics and the morphology of twenty-two distinct hippocampal subregions.</p><p><strong>Results: </strong>In total, 75 non-demented participants with 63 mean years of age were included in the study. Results indicated that a higher frequency of awakenings during sleep was associated with increased volume in the right presubiculum body (beta = 0.630, <i>p</i> False Discovery Rate (FDR) <0.036). Longer sleep duration showed a tendency to be associated with smaller volumes of the right presubiculum body, hinting at a possible negative impact of prolonged sleep on this brain region. Similar trends were observed regarding sleep apnea and the presubiculum body volume. Further analysis based on age stratification revealed that in younger participants, longer sleep duration was linked to decreased volume of the presubiculum body, while a greater number of awakenings was correlated with increased volume of the same region. Among older participants, higher frequencies of awakenings were associated with larger volumes in various hippocampal subfields.</p><p><strong>Conclusions: </strong>These findings shed light on the complex relationship between sleep characteristics and brain structure, highlighting potential age-related differences. The study provides valuable insights into how sleep disruptions may impact hippocampal morphology and cognitive function of cognitively healthy adults. Further research is warranted to elucidate the underlying mechanisms and implications for neurodegenerative diseases.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 8","pages":"159"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jin2308159","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sleep patterns often shift as people age, a phenomenon frequently associated with the onset of neurodegenerative conditions. Additionally, distinct alterations occur in brain structure as individuals grow older, particularly within the hippocampus, a region known for its role in cognition and sleep regulation. Yet, how exactly do changes in sleep relate to specific subfields within the hippocampus is still unclear.

Methods: We conducted a study involving non-demented healthy adults from the Aiginition Longitudinal Biomarker Investigation Of Neurodegeneration (ALBION) cohort. Participants underwent objective sleep measurements using wrist Actiwatch and WatchPAT devices. Further, all participants underwent the same Magnetic Resonance Imaging (MRI) protocol, including a 3D high resolution T1-weighted sequence, on the same 3.0 Tesla MRI scanner using an eight-channel head coil. The study aimed to examine the relationship between objectively measured sleep metrics and the morphology of twenty-two distinct hippocampal subregions.

Results: In total, 75 non-demented participants with 63 mean years of age were included in the study. Results indicated that a higher frequency of awakenings during sleep was associated with increased volume in the right presubiculum body (beta = 0.630, p False Discovery Rate (FDR) <0.036). Longer sleep duration showed a tendency to be associated with smaller volumes of the right presubiculum body, hinting at a possible negative impact of prolonged sleep on this brain region. Similar trends were observed regarding sleep apnea and the presubiculum body volume. Further analysis based on age stratification revealed that in younger participants, longer sleep duration was linked to decreased volume of the presubiculum body, while a greater number of awakenings was correlated with increased volume of the same region. Among older participants, higher frequencies of awakenings were associated with larger volumes in various hippocampal subfields.

Conclusions: These findings shed light on the complex relationship between sleep characteristics and brain structure, highlighting potential age-related differences. The study provides valuable insights into how sleep disruptions may impact hippocampal morphology and cognitive function of cognitively healthy adults. Further research is warranted to elucidate the underlying mechanisms and implications for neurodegenerative diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
客观睡眠功能与社区居住成年人的海马区体积有关。
背景:睡眠模式通常会随着年龄的增长而改变,这种现象经常与神经退行性疾病的发病有关。此外,随着年龄的增长,大脑结构也会发生明显的变化,尤其是海马区,该区域因其在认知和睡眠调节中的作用而闻名。然而,睡眠的变化究竟与海马内的特定亚区有何关系,目前仍不清楚:我们进行了一项研究,研究对象是来自神经退行性变纵向生物标志物研究(ALBION)队列的非痴呆健康成年人。参与者使用腕式 Actiwatch 和 WatchPAT 设备进行了客观睡眠测量。此外,所有参与者都在同一台使用八通道头部线圈的 3.0 特斯拉核磁共振成像(MRI)扫描仪上接受了相同的核磁共振成像(MRI)方案,包括三维高分辨率 T1 加权序列。研究旨在探讨客观测量的睡眠指标与 22 个不同海马亚区形态之间的关系:共有 75 名平均年龄为 63 岁的非痴呆症患者参与了研究。结果表明,睡眠中觉醒频率越高,右侧管前体的体积越大(β=0.630,p 假发现率(FDR)):这些发现揭示了睡眠特征与大脑结构之间的复杂关系,突出了与年龄有关的潜在差异。该研究为了解睡眠干扰如何影响认知健康的成年人的海马形态和认知功能提供了宝贵的见解。我们有必要开展进一步的研究,以阐明其潜在机制和对神经退行性疾病的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
173
审稿时长
2 months
期刊介绍: JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.
期刊最新文献
The Modulatory Effect of Exogenous Orienting on Audiovisual Emotional Integration: An ERP Study. Precise 3D Localization of Intracerebral Implants Using a Simple Brain Clearing Method. The Regulatory Effect of Insulin-Like Growth Factor-2 on Hypothalamic Gonadotropin-Releasing Hormone Neurons during the Pubertal Period. Insular Epilepsy: Functions, Diagnostic Approaches, and Surgical Interventions. MRI-Negative Temporal Lobe Epilepsy: A Study of Brain Structure in Adults Using Surface-Based Morphological Features.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1