{"title":"Resting-State Brain Function Alteration in Colorectal Cancer Patients.","authors":"Yanan Xu, Zihan Ma, Jieyu Chen, Huiyan Zhang, Guo Shen, Gang Huang, Wenwen Zhang, Lianping Zhao","doi":"10.31083/j.jin2308151","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>To investigate the abnormal pattern of altered functional activity in the brain and the neuroimaging mechanisms underlying the cognitive impairment of patients with colorectal cancer (CRC) via resting-state functional magnetic resonance imaging (rs-fMRI).</p><p><strong>Materials and methods: </strong>CRC patients (n = 56) and healthy controls (HCs) (n = 50) were studied. The participants underwent rs-fMRI scans and the Montreal Cognitive Assessment (MoCA). The amplitude of low-frequency fluctuations (ALFF), degree centrality (DC), regional homogeneity (ReHo), and MoCA scores, were calculated for participants.</p><p><strong>Results: </strong>The scores of executives, visuospatial, memory, language and attention were lower in CRC patients. ReHo and ALFF values in the left postcentral gyrus, ReHo values in the right postcentral gyrus, ALFF and DC values in the left middle occipital gyrus, ReHo and DC values in the right lingual gyrus, DC values in the right angular gyrus and precuneus, and ALFF values in the left middle temporal gyrus decreased conspicuously in the CRC patients.</p><p><strong>Conclusion: </strong>CRC patients have abnormal resting state function, mainly in the brain areas involved in cognitive function. The overlapping brain regions with abnormal functional indicators are in the middle occipital gyrus, postcentral gyrus, and lingual gyrus. This study reveals the potential biological pathways involved in brain impairment and neurocognitive decline in patients with CRC.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 8","pages":"151"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jin2308151","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: To investigate the abnormal pattern of altered functional activity in the brain and the neuroimaging mechanisms underlying the cognitive impairment of patients with colorectal cancer (CRC) via resting-state functional magnetic resonance imaging (rs-fMRI).
Materials and methods: CRC patients (n = 56) and healthy controls (HCs) (n = 50) were studied. The participants underwent rs-fMRI scans and the Montreal Cognitive Assessment (MoCA). The amplitude of low-frequency fluctuations (ALFF), degree centrality (DC), regional homogeneity (ReHo), and MoCA scores, were calculated for participants.
Results: The scores of executives, visuospatial, memory, language and attention were lower in CRC patients. ReHo and ALFF values in the left postcentral gyrus, ReHo values in the right postcentral gyrus, ALFF and DC values in the left middle occipital gyrus, ReHo and DC values in the right lingual gyrus, DC values in the right angular gyrus and precuneus, and ALFF values in the left middle temporal gyrus decreased conspicuously in the CRC patients.
Conclusion: CRC patients have abnormal resting state function, mainly in the brain areas involved in cognitive function. The overlapping brain regions with abnormal functional indicators are in the middle occipital gyrus, postcentral gyrus, and lingual gyrus. This study reveals the potential biological pathways involved in brain impairment and neurocognitive decline in patients with CRC.
期刊介绍:
JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.