Synergistic Antibacterial Effect of Eisenia bicyclis Extracts in Combination with Antibiotics against Fish Pathogenic Bacteria.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of microbiology and biotechnology Pub Date : 2024-10-28 Epub Date: 2024-07-22 DOI:10.4014/jmb.2406.06027
Raul Joao Lourenco Mascarenha, Du-Min Jo, Yoon-Ah Sim, Do-Hyung Kim, Young-Mog Kim
{"title":"Synergistic Antibacterial Effect of <i>Eisenia bicyclis</i> Extracts in Combination with Antibiotics against Fish Pathogenic Bacteria.","authors":"Raul Joao Lourenco Mascarenha, Du-Min Jo, Yoon-Ah Sim, Do-Hyung Kim, Young-Mog Kim","doi":"10.4014/jmb.2406.06027","DOIUrl":null,"url":null,"abstract":"<p><p>The aquaculture industry faces significant challenges due to bacterial infections caused by <i>Edwardsiella tarda</i>, <i>Photobacterium damselae</i>, and <i>Vibrio harveyi</i>. The extensive use of traditional antibiotics, has resulted in widespread antibiotic resistance. This study aimed to investigate the antibacterial potential of the brown seaweed <i>Eisenia bicyclis</i>, particularly its synergistic effects with antibiotics against these fish pathogenic bacteria. <i>E. bicyclis</i> were processed to obtain methanolic extracts and fractionated using different polar solvents. The antibacterial activities of these extracts and fractions were assessed through disc diffusion and minimum inhibitory concentration (MIC) assays. The study further evaluated the antibiotic susceptibility of the bacterial strains and the synergistic effects of the extracts combined with erythromycin and oxyteteracycline using the fractional inhibitory concentration index. Results showed that the ethyl acetate (EtOAc) fraction of <i>E. bicyclis</i> methanolic extract exhibited the highest antibacterial activity. The combination of the EtOAc fraction with erythromycin significantly enhanced its antibacterial efficacy against the tested strains. This synergistic effect was indicated by a notable reduction in MIC values, demonstrating the potential of <i>E. bicyclis</i> to enhance the effectiveness of traditional antibiotics. The findings suggest that <i>E. bicyclis</i> extracts, particularly the EtOAc fraction, could serve as a potent natural resource to counteract antibiotic resistance in aquaculture.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 10","pages":"2112-2117"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540609/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2406.06027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aquaculture industry faces significant challenges due to bacterial infections caused by Edwardsiella tarda, Photobacterium damselae, and Vibrio harveyi. The extensive use of traditional antibiotics, has resulted in widespread antibiotic resistance. This study aimed to investigate the antibacterial potential of the brown seaweed Eisenia bicyclis, particularly its synergistic effects with antibiotics against these fish pathogenic bacteria. E. bicyclis were processed to obtain methanolic extracts and fractionated using different polar solvents. The antibacterial activities of these extracts and fractions were assessed through disc diffusion and minimum inhibitory concentration (MIC) assays. The study further evaluated the antibiotic susceptibility of the bacterial strains and the synergistic effects of the extracts combined with erythromycin and oxyteteracycline using the fractional inhibitory concentration index. Results showed that the ethyl acetate (EtOAc) fraction of E. bicyclis methanolic extract exhibited the highest antibacterial activity. The combination of the EtOAc fraction with erythromycin significantly enhanced its antibacterial efficacy against the tested strains. This synergistic effect was indicated by a notable reduction in MIC values, demonstrating the potential of E. bicyclis to enhance the effectiveness of traditional antibiotics. The findings suggest that E. bicyclis extracts, particularly the EtOAc fraction, could serve as a potent natural resource to counteract antibiotic resistance in aquaculture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双环鳗提取物与抗生素联用对鱼类致病菌的协同抗菌作用
水产养殖业面临着由 Edwardsiella tarda、Photobacterium damselae 和 Vibrio harveyi 引起的细菌感染所带来的巨大挑战。传统抗生素的广泛使用导致了广泛的抗生素耐药性。本研究旨在调查棕色海藻双环藻的抗菌潜力,特别是它与抗生素对这些鱼类致病菌的协同作用。研究人员使用不同的极性溶剂对双环藻进行处理,以获得甲醇提取物并对其进行分馏。这些提取物和馏分的抗菌活性通过盘扩散和最小抑菌浓度 (MIC) 检测进行评估。研究还进一步评估了细菌菌株对抗生素的敏感性,并使用分馏抑制浓度指数评估了提取物与红霉素和氧特罗环素的协同作用。结果表明,E. bicyclis甲醇提取物的乙酸乙酯(EtOAc)馏分具有最高的抗菌活性。将乙酸乙酯萃取物与红霉素结合使用可显著增强其对受试菌株的抗菌效果。这种协同效应表现为 MIC 值的明显降低,证明了 E. bicyclis 具有增强传统抗生素效力的潜力。研究结果表明,E. bicyclis 提取物,尤其是 EtOAc 部分,可以作为一种有效的天然资源来对抗水产养殖中的抗生素耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
期刊最新文献
Loss in Pluripotency Markers in Mesenchymal Stem Cells upon Infection with Chlamydia trachomatis. A Comprehensive Review of Naringenin, a Promising Phytochemical with Therapeutic Potential. Anti-Inflammatory Activity of Biotransformed Platycodon grandiflorum Root Extracts Containing 3-O-β-D-Glucopyranosyl Platycosides in LPS-Stimulated Alveolar Macrophages, NR8383 Cells. Green Tea Attenuates the Particulate Matter (PM)2.5-Exposed Gut-Brain Axis Dysfunction through Regulation of Intestinal Microenvironment and Hormonal Changes. ELF3 Overexpression Contributes to the Malignant Transformation of HPV16 E6/ E7-Immortalized Keratinocytes by Promoting CCNE2 Expression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1