Soft pneumatic actuators for pushing fingers into extension.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of NeuroEngineering and Rehabilitation Pub Date : 2024-08-30 DOI:10.1186/s12984-024-01444-4
James V McCall, Gregory D Buckner, Derek G Kamper
{"title":"Soft pneumatic actuators for pushing fingers into extension.","authors":"James V McCall, Gregory D Buckner, Derek G Kamper","doi":"10.1186/s12984-024-01444-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Compliant pneumatic actuators possess many characteristics that are desirable for wearable robotic systems. These actuators can be lightweight, integrated with clothing, and accommodate uncontrolled degrees of freedom. These attributes are especially desirable for hand exoskeletons, where the soft actuator can conform to the highly variable digit shape. In particular, locating the pneumatic actuator on the palmar side of the digit may have benefits for assisting finger extension and resisting unwanted finger flexion, but this configuration requires suppleness to allow digit flexion while retaining sufficient stiffness to assist extension.</p><p><strong>Methods: </strong>To meet these needs, we designed an actuator consisting of a hollow chamber long enough to span the joints of each digit while sufficiently narrow not to inhibit finger adduction. We explored the geometrical design parameter space for this chamber in terms of shape, dimensions, and wall thickness. After fabricating an elastomer-based prototype for each actuator design, we measured active extension force and passive resistance to bending for each chamber using a mechanical jig. We also created a finite element model for each chamber to enable estimation of the impact of chamber deformation, caused by joint rotation, on airflow through the chamber. Finally, we created a prototype hand exoskeleton with the chamber parameters yielding the best outcomes.</p><p><strong>Results: </strong>A rectangular cross-sectional area was preferable to a semi-obround shape for the chamber; wall thickness also impacted performance. Extension joint torque reached 0.33 N-m at a low chamber pressure of 48.3 kPa. The finite element model confirmed that airflow for the rectangular chamber remained high despite deformation resulting from joint rotation. The hand exoskeleton created with the rectangular chambers enabled rapid movement, with a cycle time of 1.1 s for voluntary flexion followed by actuated extension.</p><p><strong>Conclusions: </strong>The developed soft actuators are feasible for use in promoting finger extension from the palmar side of the hand. This placement utilizes pushing rather than pulling for digit extension, which is more comfortable and safer. The small chamber volumes allow rapid filling and evacuation to facilitate relatively high frequency finger movements.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"21 1","pages":"146"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363593/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01444-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Compliant pneumatic actuators possess many characteristics that are desirable for wearable robotic systems. These actuators can be lightweight, integrated with clothing, and accommodate uncontrolled degrees of freedom. These attributes are especially desirable for hand exoskeletons, where the soft actuator can conform to the highly variable digit shape. In particular, locating the pneumatic actuator on the palmar side of the digit may have benefits for assisting finger extension and resisting unwanted finger flexion, but this configuration requires suppleness to allow digit flexion while retaining sufficient stiffness to assist extension.

Methods: To meet these needs, we designed an actuator consisting of a hollow chamber long enough to span the joints of each digit while sufficiently narrow not to inhibit finger adduction. We explored the geometrical design parameter space for this chamber in terms of shape, dimensions, and wall thickness. After fabricating an elastomer-based prototype for each actuator design, we measured active extension force and passive resistance to bending for each chamber using a mechanical jig. We also created a finite element model for each chamber to enable estimation of the impact of chamber deformation, caused by joint rotation, on airflow through the chamber. Finally, we created a prototype hand exoskeleton with the chamber parameters yielding the best outcomes.

Results: A rectangular cross-sectional area was preferable to a semi-obround shape for the chamber; wall thickness also impacted performance. Extension joint torque reached 0.33 N-m at a low chamber pressure of 48.3 kPa. The finite element model confirmed that airflow for the rectangular chamber remained high despite deformation resulting from joint rotation. The hand exoskeleton created with the rectangular chambers enabled rapid movement, with a cycle time of 1.1 s for voluntary flexion followed by actuated extension.

Conclusions: The developed soft actuators are feasible for use in promoting finger extension from the palmar side of the hand. This placement utilizes pushing rather than pulling for digit extension, which is more comfortable and safer. The small chamber volumes allow rapid filling and evacuation to facilitate relatively high frequency finger movements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于推动手指伸展的软气动执行器。
背景:顺应性气动执行器具有许多可穿戴机器人系统所需要的特性。这些致动器重量轻,可与服装集成,并能适应不受控制的自由度。对于手部外骨骼来说,这些特性尤为理想,因为在手部外骨骼中,柔软的致动器可以适应高度可变的数字形状。特别是,将气动致动器安装在手指的掌侧可能有利于帮助手指伸展并防止不必要的手指弯曲,但这种配置需要柔软度以允许手指弯曲,同时保留足够的硬度以帮助手指伸展:为了满足这些需求,我们设计了一种由空腔组成的致动器,空腔的长度足以跨越每个手指的关节,同时又足够狭窄,不会抑制手指的内收。我们从形状、尺寸和壁厚等方面探索了空腔的几何设计参数空间。在为每种致动器设计制作了基于弹性体的原型后,我们使用机械夹具测量了每个腔体的主动伸展力和被动抗弯强度。我们还为每个腔体创建了一个有限元模型,以便估算关节旋转造成的腔体变形对通过腔体的气流的影响。最后,我们创建了一个手部外骨骼原型,其腔室参数产生了最佳效果:结果:长方形横截面积比半圆形的腔室更可取;壁厚也会影响性能。在 48.3 kPa 的低腔室压力下,伸展关节扭矩达到 0.33 N-m。有限元模型证实,尽管关节旋转会导致变形,但矩形腔室的气流仍然很高。用矩形腔体制作的手部外骨骼能够快速运动,自主屈伸和驱动伸展的周期时间为 1.1 秒:结论:开发的软促动器可用于从手掌侧促进手指伸展。这种装置利用推力而不是拉力来实现手指伸展,更加舒适和安全。小腔容积允许快速填充和排空,以促进相对高频率的手指运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
期刊最新文献
Telerehabilitation using a 2-D planar arm rehabilitation robot for hemiparetic stroke: a feasibility study of clinic-to-home exergaming therapy. Therapeutic effects of powered exoskeletal robot-assisted gait training in inpatients in the early stage after stroke: a pilot case-controlled study. Non-invasive brain stimulation enhances motor and cognitive performances during dual tasks in patients with Parkinson's disease: a systematic review and meta-analysis. Myoelectric motor execution and sensory training to treat chronic pain and paralysis in a replanted arm: a case study. Selective nociceptive modulation using a novel prototype of transcutaneous kilohertz high-frequency alternating current stimulation: a crossover double-blind randomized sham-controlled trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1