Ji Hong Kim, Hyoseon Yu, Ji Hye Kang, Eun Hee Hong, Min Ho Kang, Mincheol Seong, Heeyoon Cho, Yong Un Shin
{"title":"MicroRNA Regulation for Inflammasomes in High Glucose-Treated ARPE-19 Cells.","authors":"Ji Hong Kim, Hyoseon Yu, Ji Hye Kang, Eun Hee Hong, Min Ho Kang, Mincheol Seong, Heeyoon Cho, Yong Un Shin","doi":"10.1155/2024/3654690","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to evaluate the expression of microRNAs (miRNAs) and inflammasomes in diabetes-induced retinal cells and to determine their role in the pathogenesis of diabetic retinopathy (DR).</p><p><strong>Methods: </strong>To establish diabetes-induced cell models, ARPE-19 cells were treated with high glucose. The expression levels of five miRNAs (miR-185, miR-17, miR-20a, miR-15a, and miR-15b) were measured in high glucose-treated ARPE-19 cells using real-time quantitative polymerase chain reaction. Western blotting was performed to measure inflammasome expression in cellular models. miR-17 was selected as the target miRNA, and inflammasome expression was measured following the transfection of an miR-17 mimic into high glucose-treated ARPE-19 cells.</p><p><strong>Results: </strong>In high glucose-treated ARPE-19 cells, miRNA expression was substantially downregulated, whereas that of inflammasome components was significantly increased. Following the transfection of the miR-17 mimic into high glucose-treated ARPE-19 cells, the levels of inflammasome components were significantly decreased.</p><p><strong>Conclusions: </strong>This study investigated the relationship between miRNAs and inflammasomes in diabetes-induced cells using high glucose-treated ARPE-19 cells. These findings suggested that miR-17 suppresses inflammasomes, thereby reducing the subsequent inflammatory response and indicating that miRNAs and inflammasomes could serve as new therapeutic targets for DR.</p>","PeriodicalId":16674,"journal":{"name":"Journal of Ophthalmology","volume":"2024 ","pages":"3654690"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366061/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/3654690","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to evaluate the expression of microRNAs (miRNAs) and inflammasomes in diabetes-induced retinal cells and to determine their role in the pathogenesis of diabetic retinopathy (DR).
Methods: To establish diabetes-induced cell models, ARPE-19 cells were treated with high glucose. The expression levels of five miRNAs (miR-185, miR-17, miR-20a, miR-15a, and miR-15b) were measured in high glucose-treated ARPE-19 cells using real-time quantitative polymerase chain reaction. Western blotting was performed to measure inflammasome expression in cellular models. miR-17 was selected as the target miRNA, and inflammasome expression was measured following the transfection of an miR-17 mimic into high glucose-treated ARPE-19 cells.
Results: In high glucose-treated ARPE-19 cells, miRNA expression was substantially downregulated, whereas that of inflammasome components was significantly increased. Following the transfection of the miR-17 mimic into high glucose-treated ARPE-19 cells, the levels of inflammasome components were significantly decreased.
Conclusions: This study investigated the relationship between miRNAs and inflammasomes in diabetes-induced cells using high glucose-treated ARPE-19 cells. These findings suggested that miR-17 suppresses inflammasomes, thereby reducing the subsequent inflammatory response and indicating that miRNAs and inflammasomes could serve as new therapeutic targets for DR.
期刊介绍:
Journal of Ophthalmology is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies related to the anatomy, physiology and diseases of the eye. Submissions should focus on new diagnostic and surgical techniques, instrument and therapy updates, as well as clinical trials and research findings.