SAD: semi-supervised automatic detection of BOLD activations in high temporal resolution fMRI data.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-12-01 Epub Date: 2024-08-29 DOI:10.1007/s10334-024-01197-0
Tim Schmidt, Zoltán Nagy
{"title":"SAD: semi-supervised automatic detection of BOLD activations in high temporal resolution fMRI data.","authors":"Tim Schmidt, Zoltán Nagy","doi":"10.1007/s10334-024-01197-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Despite the prevalent use of the general linear model (GLM) in fMRI data analysis, assuming a pre-defined hemodynamic response function (HRF) for all voxels can lead to reduced reliability and may distort the inferences derived from it. To overcome the necessity of presuming a specific model for the hemodynamic response, we introduce a semi-supervised automatic detection (SAD) method.</p><p><strong>Materials and methods: </strong>The proposed SAD method employs a Bi-LSTM neural network to classify high temporal resolution fMRI data. Network training utilized an fMRI dataset with 75-ms temporal resolution in an iterative scheme. Classification performance was evaluated on a second fMRI dataset from the same participant, collected on a different day. Comparative analysis with the standard GLM approach was conducted to evaluate the cooperative effectiveness of the SAD method.</p><p><strong>Results: </strong>The SAD method performed well based on the classification scores: true-positive rate = 0.961, area under the receiver operating curve = 0.998, true-negative rate = 0.99, F1-score = 0.979, False-negative rate = 0.038, false-discovery rate = 0.002, false-positive rate = 0.002 at 75-ms temporal resolution.</p><p><strong>Conclusion: </strong>SAD can detect hemodynamic responses at 75-ms temporal resolution without relying on a specific shape of an HRF. Future work could expand the use cases to include more participants and different fMRI paradigms.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"1031-1046"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01197-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Despite the prevalent use of the general linear model (GLM) in fMRI data analysis, assuming a pre-defined hemodynamic response function (HRF) for all voxels can lead to reduced reliability and may distort the inferences derived from it. To overcome the necessity of presuming a specific model for the hemodynamic response, we introduce a semi-supervised automatic detection (SAD) method.

Materials and methods: The proposed SAD method employs a Bi-LSTM neural network to classify high temporal resolution fMRI data. Network training utilized an fMRI dataset with 75-ms temporal resolution in an iterative scheme. Classification performance was evaluated on a second fMRI dataset from the same participant, collected on a different day. Comparative analysis with the standard GLM approach was conducted to evaluate the cooperative effectiveness of the SAD method.

Results: The SAD method performed well based on the classification scores: true-positive rate = 0.961, area under the receiver operating curve = 0.998, true-negative rate = 0.99, F1-score = 0.979, False-negative rate = 0.038, false-discovery rate = 0.002, false-positive rate = 0.002 at 75-ms temporal resolution.

Conclusion: SAD can detect hemodynamic responses at 75-ms temporal resolution without relying on a specific shape of an HRF. Future work could expand the use cases to include more participants and different fMRI paradigms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAD:高时间分辨率 fMRI 数据中 BOLD 激活的半监督自动检测。
目的:尽管在 fMRI 数据分析中普遍使用一般线性模型(GLM),但假设所有体素都有一个预定义的血液动力学响应函数(HRF)会导致可靠性降低,并可能扭曲由此得出的推论。为了克服预设特定血液动力学响应模型的必要性,我们引入了一种半监督自动检测(SAD)方法:所提出的 SAD 方法采用 Bi-LSTM 神经网络对高时间分辨率的 fMRI 数据进行分类。网络训练采用迭代方案,利用时间分辨率为 75 毫秒的 fMRI 数据集。对同一受试者在不同日期收集的第二个 fMRI 数据集进行了分类性能评估。与标准 GLM 方法进行了比较分析,以评估 SAD 方法的合作效果:根据分类得分,SAD 方法表现良好:在 75 毫秒时间分辨率下,真阳性率 = 0.961,接收者工作曲线下面积 = 0.998,真阴性率 = 0.99,F1 分数 = 0.979,假阴性率 = 0.038,假发现率 = 0.002,假阳性率 = 0.002:结论:SAD 可在 75 毫秒时间分辨率下检测血液动力学反应,而无需依赖 HRF 的特定形状。未来的工作可以扩展使用案例,以包括更多的参与者和不同的 fMRI 范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
期刊最新文献
Development of a cost-effective 3D-printed MRI phantom for enhanced teaching of system performance and image quality concepts. FeCl3 and GdCl3 solutions as superfast relaxation modifiers for agarose gel: a quantitative analysis. Correction to: Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. PyFaceWipe: a new defacing tool for almost any MRI contrast.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1