Ozge Cark, Esra Katkat, Ipek Aydogdu, Evin Iscan, Yavuz Oktay, Gunes Ozhan
{"title":"tubg1 Somatic Mutants Show Tubulinopathy-Associated Neurodevelopmental Phenotypes in a Zebrafish Model.","authors":"Ozge Cark, Esra Katkat, Ipek Aydogdu, Evin Iscan, Yavuz Oktay, Gunes Ozhan","doi":"10.1007/s12035-024-04448-2","DOIUrl":null,"url":null,"abstract":"<p><p>Development of the multilayered cerebral cortex relies on precise orchestration of neurogenesis, neuronal migration, and differentiation, processes tightly regulated by microtubule dynamics. Mutations in tubulin superfamily genes have been associated with tubulinopathies, encompassing a spectrum of cortical malformations including microcephaly and lissencephaly. Here, we focus on γ-tubulin, a pivotal regulator of microtubule nucleation encoded by TUBG1. We investigate its role in brain development using a zebrafish model with somatic tubg1 mutation, recapitulating features of TUBG1-associated tubulinopathies in patients and mouse disease models. We demonstrate that γ-tubulin deficiency disrupts neurogenesis and brain development, mirroring microcephaly phenotypes. Furthermore, we uncover a novel potential regulatory link between γ-tubulin and canonical Wnt/β-catenin signaling, with γ-tubulin deficiency impairing Wnt activity. Our findings provide insights into the pathogenesis of cortical defects and suggest that γ-tubulin could be a potential target for further research in neurodevelopmental disorders, although challenges such as mode of action, specificity, and potential side effects must be addressed.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"3024-3039"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-024-04448-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Development of the multilayered cerebral cortex relies on precise orchestration of neurogenesis, neuronal migration, and differentiation, processes tightly regulated by microtubule dynamics. Mutations in tubulin superfamily genes have been associated with tubulinopathies, encompassing a spectrum of cortical malformations including microcephaly and lissencephaly. Here, we focus on γ-tubulin, a pivotal regulator of microtubule nucleation encoded by TUBG1. We investigate its role in brain development using a zebrafish model with somatic tubg1 mutation, recapitulating features of TUBG1-associated tubulinopathies in patients and mouse disease models. We demonstrate that γ-tubulin deficiency disrupts neurogenesis and brain development, mirroring microcephaly phenotypes. Furthermore, we uncover a novel potential regulatory link between γ-tubulin and canonical Wnt/β-catenin signaling, with γ-tubulin deficiency impairing Wnt activity. Our findings provide insights into the pathogenesis of cortical defects and suggest that γ-tubulin could be a potential target for further research in neurodevelopmental disorders, although challenges such as mode of action, specificity, and potential side effects must be addressed.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.