{"title":"Community structure and assembly of myxomycetes in northern Chinese forests under geographic barriers.","authors":"Gu Rao, Wen-Long Song, Shu-Zhen Yan, Shuang-Lin Chen","doi":"10.1080/00275514.2024.2386231","DOIUrl":null,"url":null,"abstract":"<p><p>The study of myxomycete biogeography has a long-standing history and has consistently drawn scholarly interest. Nevertheless, studies focusing specifically on the spatial and temporal distribution patterns of myxomycete diversity are relatively limited, with even fewer investigating the mechanisms driving the generation and maintenance of myxomycete diversity. Therefore, this study selected two geographically distant sampling sites within northern Chinese forests to investigate myxomycete species composition, community structure, environmental drivers, and assembly patterns under geographic barriers. We established plots in the Altai Mountains (ALE) and the Greater Khingan Mountains (GKM), gathered bark and litter, and conducted 80-day moist chamber cultures of myxomycetes. Additionally, myxomycete specimens were collected in the field simultaneously to supplement the data set. This study collected 541 myxomycete specimens belonging to 73 species from 28 genera, spanning 12 families and eight orders. The ALE and the GKM had 20 identical species, accounting for 27% of the total species. Myxomycetes from both regions exhibited abundant occurrence 18 days after cultivation, with the quantity on bark substrates notably higher than on litter. <i>Arcyria pomiformis</i> and <i>Comatricha elegans</i> were the most common species in moist chamber cultures. Mantel test outcomes revealed that environmental factors had no significant impact on myxomycete community similarity between the two areas, aligning with findings from the neutral community model analysis, indicating a predominant influence of stochastic processes on myxomycete community structure in moist chamber cultures. This study represents the first application of a quantitative framework to analyze myxomycete community assembly cultivated in moist chambers.</p>","PeriodicalId":18779,"journal":{"name":"Mycologia","volume":" ","pages":"903-914"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycologia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/00275514.2024.2386231","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study of myxomycete biogeography has a long-standing history and has consistently drawn scholarly interest. Nevertheless, studies focusing specifically on the spatial and temporal distribution patterns of myxomycete diversity are relatively limited, with even fewer investigating the mechanisms driving the generation and maintenance of myxomycete diversity. Therefore, this study selected two geographically distant sampling sites within northern Chinese forests to investigate myxomycete species composition, community structure, environmental drivers, and assembly patterns under geographic barriers. We established plots in the Altai Mountains (ALE) and the Greater Khingan Mountains (GKM), gathered bark and litter, and conducted 80-day moist chamber cultures of myxomycetes. Additionally, myxomycete specimens were collected in the field simultaneously to supplement the data set. This study collected 541 myxomycete specimens belonging to 73 species from 28 genera, spanning 12 families and eight orders. The ALE and the GKM had 20 identical species, accounting for 27% of the total species. Myxomycetes from both regions exhibited abundant occurrence 18 days after cultivation, with the quantity on bark substrates notably higher than on litter. Arcyria pomiformis and Comatricha elegans were the most common species in moist chamber cultures. Mantel test outcomes revealed that environmental factors had no significant impact on myxomycete community similarity between the two areas, aligning with findings from the neutral community model analysis, indicating a predominant influence of stochastic processes on myxomycete community structure in moist chamber cultures. This study represents the first application of a quantitative framework to analyze myxomycete community assembly cultivated in moist chambers.
期刊介绍:
International in coverage, Mycologia presents recent advances in mycology, emphasizing all aspects of the biology of Fungi and fungus-like organisms, including Lichens, Oomycetes and Slime Molds. The Journal emphasizes subjects including applied biology, biochemistry, cell biology, development, ecology, evolution, genetics, genomics, molecular biology, morphology, new techniques, animal or plant pathology, phylogenetics, physiology, aspects of secondary metabolism, systematics, and ultrastructure. In addition to research articles, reviews and short notes, Mycologia also includes invited papers based on presentations from the Annual Conference of the Mycological Society of America, such as Karling Lectures or Presidential Addresses.