Anagha Bindu, Sudipa Bhadra, Soubhagya Nayak, Rizwan Khan, Ashish A Prabhu, Surajbhan Sevda
{"title":"Bioelectrochemical biosensors for water quality assessment and wastewater monitoring.","authors":"Anagha Bindu, Sudipa Bhadra, Soubhagya Nayak, Rizwan Khan, Ashish A Prabhu, Surajbhan Sevda","doi":"10.1515/biol-2022-0933","DOIUrl":null,"url":null,"abstract":"<p><p>Bioelectrochemical biosensors offer a promising approach for real-time monitoring of industrial bioprocesses. Many bioelectrochemical biosensors do not require additional labelling reagents for target molecules. This simplifies the monitoring process, reduces costs, and minimizes potential contamination risks. Advancements in materials science and microfabrication technologies are paving the way for smaller, more portable bioelectrochemical biosensors. This opens doors for integration into existing bioprocessing equipment and facilitates on-site, real-time monitoring capabilities. Biosensors can be designed to detect specific heavy metals such as lead, mercury, or chromium in wastewater. Early detection allows for the implementation of appropriate removal techniques before they reach the environment. Despite these challenges, bioelectrochemical biosensors offer a significant leap forward in wastewater monitoring. As research continues to improve their robustness, selectivity, and cost-effectiveness, they have the potential to become a cornerstone of efficient and sustainable wastewater treatment practices.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"19 1","pages":"20220933"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-0933","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioelectrochemical biosensors offer a promising approach for real-time monitoring of industrial bioprocesses. Many bioelectrochemical biosensors do not require additional labelling reagents for target molecules. This simplifies the monitoring process, reduces costs, and minimizes potential contamination risks. Advancements in materials science and microfabrication technologies are paving the way for smaller, more portable bioelectrochemical biosensors. This opens doors for integration into existing bioprocessing equipment and facilitates on-site, real-time monitoring capabilities. Biosensors can be designed to detect specific heavy metals such as lead, mercury, or chromium in wastewater. Early detection allows for the implementation of appropriate removal techniques before they reach the environment. Despite these challenges, bioelectrochemical biosensors offer a significant leap forward in wastewater monitoring. As research continues to improve their robustness, selectivity, and cost-effectiveness, they have the potential to become a cornerstone of efficient and sustainable wastewater treatment practices.
期刊介绍:
Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.