Jin-Hyung Lee, Yong-Guy Kim, Ji-Su Choi, Yong Tae Jeong, Buyng Su Hwang, Jintae Lee
{"title":"Antibiofilm and Antihemolytic Activities of <i>Actinostemma lobatum</i> Extract Rich in Quercetin against <i>Staphylococcus aureus</i>.","authors":"Jin-Hyung Lee, Yong-Guy Kim, Ji-Su Choi, Yong Tae Jeong, Buyng Su Hwang, Jintae Lee","doi":"10.3390/pharmaceutics16081075","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> biofilm formation is a pivotal mechanism in the development of drug resistance, conferring resilience against conventional antibiotics. This study investigates the inhibitory effects of <i>Actinostemma lobatum</i> (<i>A. lobatum</i>) Maxim extracts on <i>S. aureus</i> biofilm formation and their antihemolytic activities, with a particular focus on identifying the active antibiofilm and antihemolysis compound, quercetin. Seven solvent extracts and twelve sub-fractions were evaluated against four <i>S. aureus</i> strains. The ethyl acetate fraction (10 to 100 μg/mL) significantly hindered biofilm formation by both methicillin-sensitive and -resistant strains. Bioassay-guided isolation of the ethyl acetate extract identified quercetin as the major antibiofilm compound. The ethyl acetate extract was found to contain 391 μg/mg of quercetin and 30 μg/mg of kaempferol. Additionally, the <i>A. lobatum</i> extract exhibited antihemolytic activity attributable to the presence of quercetin. The findings suggest that quercetin-rich extracts from <i>A. lobatum</i> and other quercetin-rich foods and plants hold promise for inhibiting resilient <i>S. aureus</i> biofilm formation and attenuating its virulence.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16081075","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcus aureus biofilm formation is a pivotal mechanism in the development of drug resistance, conferring resilience against conventional antibiotics. This study investigates the inhibitory effects of Actinostemma lobatum (A. lobatum) Maxim extracts on S. aureus biofilm formation and their antihemolytic activities, with a particular focus on identifying the active antibiofilm and antihemolysis compound, quercetin. Seven solvent extracts and twelve sub-fractions were evaluated against four S. aureus strains. The ethyl acetate fraction (10 to 100 μg/mL) significantly hindered biofilm formation by both methicillin-sensitive and -resistant strains. Bioassay-guided isolation of the ethyl acetate extract identified quercetin as the major antibiofilm compound. The ethyl acetate extract was found to contain 391 μg/mg of quercetin and 30 μg/mg of kaempferol. Additionally, the A. lobatum extract exhibited antihemolytic activity attributable to the presence of quercetin. The findings suggest that quercetin-rich extracts from A. lobatum and other quercetin-rich foods and plants hold promise for inhibiting resilient S. aureus biofilm formation and attenuating its virulence.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.