{"title":"A novel Skin lesion prediction and classification technique: ViT-GradCAM.","authors":"Muhammad Shafiq, Kapil Aggarwal, Jagannathan Jayachandran, Gayathri Srinivasan, Rajasekhar Boddu, Adugna Alemayehu","doi":"10.1111/srt.70040","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Skin cancer is one of the highly occurring diseases in human life. Early detection and treatment are the prime and necessary points to reduce the malignancy of infections. Deep learning techniques are supplementary tools to assist clinical experts in detecting and localizing skin lesions. Vision transformers (ViT) based on image segmentation classification using multiple classes provide fairly accurate detection and are gaining more popularity due to legitimate multiclass prediction capabilities.</p><p><strong>Materials and methods: </strong>In this research, we propose a new ViT Gradient-Weighted Class Activation Mapping (GradCAM) based architecture named ViT-GradCAM for detecting and classifying skin lesions by spreading ratio on the lesion's surface area. The proposed system is trained and validated using a HAM 10000 dataset by studying seven skin lesions. The database comprises 10 015 dermatoscopic images of varied sizes. The data preprocessing and data augmentation techniques are applied to overcome the class imbalance issues and improve the model's performance.</p><p><strong>Result: </strong>The proposed algorithm is based on ViT models that classify the dermatoscopic images into seven classes with an accuracy of 97.28%, precision of 98.51, recall of 95.2%, and an F1 score of 94.6, respectively. The proposed ViT-GradCAM obtains better and more accurate detection and classification than other state-of-the-art deep learning-based skin lesion detection models. The architecture of ViT-GradCAM is extensively visualized to highlight the actual pixels in essential regions associated with skin-specific pathologies.</p><p><strong>Conclusion: </strong>This research proposes an alternate solution to overcome the challenges of detecting and classifying skin lesions using ViTs and GradCAM, which play a significant role in detecting and classifying skin lesions accurately rather than relying solely on deep learning models.</p>","PeriodicalId":21746,"journal":{"name":"Skin Research and Technology","volume":"30 9","pages":"e70040"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367666/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skin Research and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/srt.70040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Skin cancer is one of the highly occurring diseases in human life. Early detection and treatment are the prime and necessary points to reduce the malignancy of infections. Deep learning techniques are supplementary tools to assist clinical experts in detecting and localizing skin lesions. Vision transformers (ViT) based on image segmentation classification using multiple classes provide fairly accurate detection and are gaining more popularity due to legitimate multiclass prediction capabilities.
Materials and methods: In this research, we propose a new ViT Gradient-Weighted Class Activation Mapping (GradCAM) based architecture named ViT-GradCAM for detecting and classifying skin lesions by spreading ratio on the lesion's surface area. The proposed system is trained and validated using a HAM 10000 dataset by studying seven skin lesions. The database comprises 10 015 dermatoscopic images of varied sizes. The data preprocessing and data augmentation techniques are applied to overcome the class imbalance issues and improve the model's performance.
Result: The proposed algorithm is based on ViT models that classify the dermatoscopic images into seven classes with an accuracy of 97.28%, precision of 98.51, recall of 95.2%, and an F1 score of 94.6, respectively. The proposed ViT-GradCAM obtains better and more accurate detection and classification than other state-of-the-art deep learning-based skin lesion detection models. The architecture of ViT-GradCAM is extensively visualized to highlight the actual pixels in essential regions associated with skin-specific pathologies.
Conclusion: This research proposes an alternate solution to overcome the challenges of detecting and classifying skin lesions using ViTs and GradCAM, which play a significant role in detecting and classifying skin lesions accurately rather than relying solely on deep learning models.
期刊介绍:
Skin Research and Technology is a clinically-oriented journal on biophysical methods and imaging techniques and how they are used in dermatology, cosmetology and plastic surgery for noninvasive quantification of skin structure and functions. Papers are invited on the development and validation of methods and their application in the characterization of diseased, abnormal and normal skin.
Topics include blood flow, colorimetry, thermography, evaporimetry, epidermal humidity, desquamation, profilometry, skin mechanics, epiluminiscence microscopy, high-frequency ultrasonography, confocal microscopy, digital imaging, image analysis and computerized evaluation and magnetic resonance. Noninvasive biochemical methods (such as lipids, keratin and tissue water) and the instrumental evaluation of cytological and histological samples are also covered.
The journal has a wide scope and aims to link scientists, clinical researchers and technicians through original articles, communications, editorials and commentaries, letters, reviews, announcements and news. Contributions should be clear, experimentally sound and novel.