[A review of functional electrical stimulation based on brain-computer interface].

Yao Wang, Yuhan Li, Hongyan Cui, Meng Li, Xiaogang Chen
{"title":"[A review of functional electrical stimulation based on brain-computer interface].","authors":"Yao Wang, Yuhan Li, Hongyan Cui, Meng Li, Xiaogang Chen","doi":"10.7507/1001-5515.202311036","DOIUrl":null,"url":null,"abstract":"<p><p>Individuals with motor dysfunction caused by damage to the central nervous system are unable to transmit voluntary movement commands to their muscles, resulting in a reduced ability to control their limbs. However, traditional rehabilitation methods have problems such as long treatment cycles and high labor costs. Functional electrical stimulation (FES) based on brain-computer interface (BCI) connects the patient's intentions with muscle contraction, and helps to promote the reconstruction of nerve function by recognizing nerve signals and stimulating the moving muscle group with electrical impulses to produce muscle convulsions or limb movements. It is an effective treatment for sequelae of neurological diseases such as stroke and spinal cord injury. This article reviewed the current research status of BCI-based FES from three aspects: BCI paradigms, FES parameters and rehabilitation efficacy, and looked forward to the future development trend of this technology, in order to improve the understanding of BCI-based FES.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202311036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Individuals with motor dysfunction caused by damage to the central nervous system are unable to transmit voluntary movement commands to their muscles, resulting in a reduced ability to control their limbs. However, traditional rehabilitation methods have problems such as long treatment cycles and high labor costs. Functional electrical stimulation (FES) based on brain-computer interface (BCI) connects the patient's intentions with muscle contraction, and helps to promote the reconstruction of nerve function by recognizing nerve signals and stimulating the moving muscle group with electrical impulses to produce muscle convulsions or limb movements. It is an effective treatment for sequelae of neurological diseases such as stroke and spinal cord injury. This article reviewed the current research status of BCI-based FES from three aspects: BCI paradigms, FES parameters and rehabilitation efficacy, and looked forward to the future development trend of this technology, in order to improve the understanding of BCI-based FES.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[基于脑机接口的功能性电刺激综述]。
中枢神经系统受损导致运动功能障碍的患者无法将自主运动指令传递给肌肉,从而导致控制肢体的能力下降。然而,传统的康复方法存在治疗周期长、人工成本高等问题。基于脑机接口(BCI)的功能性电刺激(FES)将患者的意图与肌肉收缩联系起来,通过识别神经信号,用电脉冲刺激运动肌群,使其产生肌肉抽搐或肢体运动,从而促进神经功能的重建。它是治疗中风和脊髓损伤等神经系统疾病后遗症的有效方法。本文从三个方面回顾了基于BCI的FES的研究现状:本文从BCI范式、FES参数和康复疗效三个方面综述了该技术的研究现状,并展望了该技术的未来发展趋势,以期提高人们对基于BCI的FES的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
期刊最新文献
[A deep transfer learning approach for cross-subject recognition of mental tasks based on functional near-infrared spectroscopy]. [A lightweight recurrence prediction model for high grade serous ovarian cancer based on hierarchical transformer fusion metadata]. [A review of functional electrical stimulation based on brain-computer interface]. [An efficient and practical electrode optimization method for transcranial electrical stimulation]. [An emerging discipline: brain-computer interfaces medicine].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1