[Three-dimensional positioning and trajectory tracking of pigeons in large indoor spaces].

Xinyu Liu, Kaige Liu, Huanhuan Peng, Yue Qin, Xiaomin Qi, Dongyun Wang, Shengjun Wen
{"title":"[Three-dimensional positioning and trajectory tracking of pigeons in large indoor spaces].","authors":"Xinyu Liu, Kaige Liu, Huanhuan Peng, Yue Qin, Xiaomin Qi, Dongyun Wang, Shengjun Wen","doi":"10.7507/1001-5515.202401064","DOIUrl":null,"url":null,"abstract":"<p><p>Animal localization and trajectory tracking are of great value for the study of brain spatial cognition and navigation neural mechanisms. However, traditional optical lens video positioning techniques are limited in their scope due to factors such as camera perspective. For pigeons with excellent spatial cognition and navigation abilities, based on the beacon positioning technology, a three-dimensional (3D) trajectory positioning and tracking method suitable for large indoor spaces was proposed, and the corresponding positioning principle and hardware structure were provided. The results of <i>in vitro</i> and <i>in vivo</i> experiments showed that the system could achieve centimeter-level positioning and trajectory tracking of pigeons in a space of 360 cm × 200 cm × 245 cm. Compared with traditional optical lens video positioning techniques, this system has the advantages of large space, high precision, and high response speed. It not only helps to study the neural mechanisms of pigeon 3D spatial cognition and navigation, but also has high reference value for trajectory tracking of other animals.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"715-723"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202401064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Animal localization and trajectory tracking are of great value for the study of brain spatial cognition and navigation neural mechanisms. However, traditional optical lens video positioning techniques are limited in their scope due to factors such as camera perspective. For pigeons with excellent spatial cognition and navigation abilities, based on the beacon positioning technology, a three-dimensional (3D) trajectory positioning and tracking method suitable for large indoor spaces was proposed, and the corresponding positioning principle and hardware structure were provided. The results of in vitro and in vivo experiments showed that the system could achieve centimeter-level positioning and trajectory tracking of pigeons in a space of 360 cm × 200 cm × 245 cm. Compared with traditional optical lens video positioning techniques, this system has the advantages of large space, high precision, and high response speed. It not only helps to study the neural mechanisms of pigeon 3D spatial cognition and navigation, but also has high reference value for trajectory tracking of other animals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[鸽子在大型室内空间的三维定位和轨迹跟踪]。
动物定位和轨迹跟踪对于研究大脑空间认知和导航神经机制具有重要价值。然而,传统的光学镜头视频定位技术受摄像机视角等因素的影响,其定位范围有限。针对鸽子卓越的空间认知和导航能力,基于信标定位技术,提出了一种适用于室内大空间的三维(3D)轨迹定位和跟踪方法,并提供了相应的定位原理和硬件结构。体外和体内实验结果表明,该系统可在 360 cm × 200 cm × 245 cm 的空间内实现厘米级的鸽子定位和轨迹跟踪。与传统的光学镜头视频定位技术相比,该系统具有空间大、精度高、响应速度快等优点。它不仅有助于研究鸽子三维空间认知和导航的神经机制,而且对其他动物的轨迹跟踪具有很高的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
期刊最新文献
[A lightweight convolutional neural network for myositis classification from muscle ultrasound images]. [A review on depth perception techniques in organoid images]. [Advances in nanostructured surfaces for enhanced mechano-bactericidal applications]. [Advances in the diagnosis of prostate cancer based on image fusion]. [Analysis of nerve excitability in the dentate gyrus of the hippocampus in cerebral ischaemia-reperfusion mice].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1